
How-Tos
Version 6.0.2-1

This is a collection of How-Tos designed to make it easier to get started using
Wing with specific 3rd party tools and libraries for Python.

You can use these How-Tos to get set up quickly developing desktop UIs, web
applications, 2D and 3D movies and games, and to learn how to use Wing with
other libraries.

These How-Tos assume you are already familiar with the 3rd party library or
application and with Wing IDE. To learn more about Wing IDE see the Quick Start
Guide or Tutorial.

Wingware, the feather logo, Wing IDE, Wing IDE 101, Wing IDE Personal, Wing
IDE Professional, and "The Intelligent Development Environment" are trademarks
or registered trademarks of Wingware in the United States and other countries.

Disclaimers: The information contained in this document is subject to change
without notice. Wingware shall not be liable for technical or editorial errors or
omissions contained in this document; nor for incidental or consequential damages
resulting from furnishing, performance, or use of this material.

Hardware and software products mentioned herein are named for identification
purposes only and may be trademarks of their respective owners.

Copyright (c) 1999-2017 by Wingware. All rights reserved.

Wingware
P.O. Box 400527
Cambridge, MA 02140-0006
United States of America

http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/intro/tutorial

Contents
How-Tos 1

Wing IDE Quick Start Guide 1

Install Python 1

Set up a Project 1

Configuring the UI 1

Navigating Code 2

Editing Code 2

Debugging Code 3

Other Features 3

Related Documents 4

How-Tos for Web Development 4

2.1. Using Wing IDE with Django 4

Installing Django 5

Quick Start with Wing IDE Professional 5

Existing Django Project 5

New Django Project 5

Django-specific Actions 6

Usage Tips 7

Debugging Exceptions 7

Debugging Django Templates 7

Notes on Auto-Completion 8

Running Unit Tests 8

Django with Buildout 8

Manual Configuration 8

Configuring the Project 9

Configuring the Debugger 9

Launching from Wing 9

Launching Outside of Wing 9

Debugging Django Templates 10

Related Documents 10

2.2. Using Wing IDE with web2py 10

Introduction 11

Setting up a Project 11

Debugging 11

Setting Run Arguments 12

Hung Cron Processes 12

Better Static Auto-completion 12

Exception Reporting in Old Web2Py Versions 13

Related Documents 13

2.3. Using Wing IDE with Flask 13

Debugging in Wing IDE 14

Related Documents 14

2.4. Using Wing IDE with Pyramid 15

Installing Pyramid 15

Configuring your Wing IDE Project 15

Debugging 16

Notes on Auto-Completion 17

Debugging Mako Templates 18

Debugging without wingdbstub.py (experimental) 18

Related Documents 19

2.5. Using Wing IDE with Plone 19

Introduction 20

Configuring your Project 20

Debugging with WingDBG 20

WingDBG in buildout-based Plone installations 21

WingDBG as an Egg 21

Debugging Plone from the IDE 21

Related Documents 22

2.6. Using Wing IDE with Zope 22

Before Getting Started 22

Upgrading from earlier Wing versions 23

Quick Start on a Single Host 23

Starting the Debugger 24

Test Drive Wing IDE 24

Setting Up Auto-Refresh 25

Alternative Approach to Reloading 25

Setting up Remote Debugging 26

Trouble Shooting Guide 27

Related Documents 27

2.7. Using Wing IDE with Turbogears 28

Installing Turbogears 28

Configuring Turbogears 1.x to use Wing 28

Configuring Turbogears 2.x to use Wing 29

Notes for Turbogears 1.x 30

Notes for Turbogears 2.x 31

Related Documents 31

2.8. Using Wing IDE with Google App Engine 31

Creating a Project 32

Configuring the Debugger 32

Using the Debugger 33

Improving Auto-Completion and Goto-Definition 34

Trouble-shooting 34

Related Documents 35

2.9. Using Wing IDE with mod_wsgi 35

Debugging Setup 35

Disabling stdin/stdout Restrictions 36

Related Documents 36

2.10. Using Wing IDE with mod_python 36

Introduction 36

Quick Start 36

Example 37

Related Documents 37

2.11. Using Wing IDE with Paste and Pylons 38

Installing Paste and/or Pylons 38

Debugging in Wing IDE 38

Debugging Mako Templates 38

Related Documents 38

2.12. Using Wing IDE with Webware 39

Introduction 39

Setting up a Project 39

Starting Debug 40

Related Documents 41

2.13. Debugging Web CGIs with Wing IDE 41

Introduction 41

Tips and Tricks 41

How-Tos for GUI Development 43

3.1. Using Wing IDE with wxPython 43

Introduction 43

Installation and Configuration 44

Test Driving the Debugger 44

Using a GUI Builder 45

Related Documents 46

3.2. Using Wing IDE with PyQt 46

Introduction 46

Installation and Configuration 46

Test Driving the Debugger 47

Using a GUI Builder 47

Related Documents 48

3.3. Using Wing IDE with GTK and PyGObject 48

Auto-Completion 48

Related Documents 49

3.4. Using Wing IDE with PyGTK 49

Introduction 49

Installation and Configuration 50

Auto-completion and Source Assistant 50

Using a GUI Builder 51

Details and Notes 51

Related Documents 51

3.5. Using Wing IDE with matplotlib 52

Working in the Python Shell 52

Working in the Debugger 53

Trouble-shooting 53

Related Documents 53

How-Tos for Modeling, Rendering, and Compositing Systems 53

4.1. Using Wing IDE with Blender 54

Introduction 54

Related Documents 55

4.2. Using Wing IDE with Autodesk Maya 55

Debugging Setup 55

Better Static Auto-completion 56

Additional Information 56

Related Documents 56

4.3. Using Wing IDE with NUKE and NUKEX 57

Project Configuration 57

Configuring for Licensed NUKE/NUKEX 57

Configuring for Personal Learning Edition of NUKE 58

Additional Project Configuration 58

Replacing the NUKE Script Editor with Wing IDE Pro 58

Debugging Python Running Under NUKE 59

Debugger Configuration Detail 60

Limitations and Notes 60

Related Documents 61

4.4. Using Wing IDE with Source Filmmaker 61

Debugging Setup 61

Related Documents 62

How-Tos for Other Libraries 62

5.1. Using Wing IDE with virtualenv 62

Project Configuration 63

Related Documents 63

5.2. Using Wing IDE with Raspberry Pi 63

Introduction 64

Remote Development with Wing IDE Pro 64

Manual Configuration for Wing IDE Personal 65

Installing and Configuring the Debugger 65

Invoking the Debugger 67

Configuration Details 67

Trouble-Shooting 68

Setting up Wifi on a Raspberry Pi 68

Related Documents 69

5.3. Using Wing IDE with Twisted 69

Installing Twisted 69

Debugging in Wing IDE 69

Related Documents 70

5.4. Using Wing IDE with Cygwin 70

Configuration 71

Related Documents 71

5.5. Using Wing IDE with pygame 71

Debugging pygame 72

Related Documents 72

5.6. Using Wing IDE with scons 72

Debugging scons 72

Related Documents 73

5.7. Using Wing IDE with IDA Python 73

Debugging IDA Python in Wing IDE 73

Related Documents 74

Using Wing IDE with IronPython 74

Project Configuration 74

Related Documents 75

6.1. Handling Large Values and Strings in the Debugger 75

6.2. Debugging C/C++ and Python together 75

6.3. Debugging Extension Modules on Linux/Unix 76

Preparing Python 76

Starting Debug 76

Tips and Tricks 77

6.4. Debugging Code with XGrab* Calls 77

6.5. Debugging Non-Python Mainloops 78

6.6. Debugging Code Running Under Py2exe 80

Wing IDE Quick Start Guide
This is a minimalist guide for getting started quickly with Wing IDE. For a more
in-depth introduction, try the Tutorial.

Install Python
If you don't already have it on your system, install Python. You may need to restart
Wing after doing so.

Set up a Project
After Wing is running, create a new project from the Project menu. Then configure
your project with the following steps:

1. Use Add Existing Directory in the Project menu to your sources to the
project. It's best to constrain this to the directories you are actively working
with and let Wing find the libraries you use through the PYTHONPATH.

2. Use Project Properties in the Project menu to set Python Executable to the
python.exe or other interpreter executable you want to use with your project.
This is typically the full path that is in sys.executable in the desired Python
installation.

3. If your code alters sys.path or loads modules in a non-standard way then you
may need to set Python Path so that Wing can find your modules for
auto-completion, refactoring, debugging, testing, other features.

4. You may want to right-click on your main entry point in the Project tool and
select Set As Main Debug File so that debugging always starts there.

5. Use Save Project As in the Project menu to save your project to disk.

Note: Wing may consume significant CPU time when it first analyzes your code
base. Progress is indicated in the lower left of the IDE window. Once this is done,
the results are cached across sessions and Wing should run with a snappy and
responsive interface.

See Project-Wide Properties and Per-File Properties for a description of all
available properties. See Source Code Analysis for background on how Wing's
source analysis system works.

Configuring the UI
You are now ready to start working with code, but may want to make a few
configuration changes first:

Key Bindings - Wing can emulate VI/Vim, Visual Studio, Emacs, Eclipse, and
Brief editors, selected with the User Interface > Keyboard > Personality
preference.

Wing IDE Quick Start Guide

1

http://wingware.com/doc/intro/tutorial
http://python.org/download
http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/proj/per-file-properties
http://wingware.com/doc/edit/source-code-analysis

Tab Key - The default tab key action depends on file type, context, and whether or
not there is a selection. This can be changed from the User
Interface > Keyboard > Tab Key Action preference.

There are many other options in Preferences.

Navigating Code
Wing provides many ways to get around your code quickly:

Goto-definition is available from the toolbar, Source menu, and by right-clicking
on symbols in the editor or shells. Use the browser-like forward/back history
buttons at the top left of the editor to return from visiting a point of definition.

Source Index menus at the top of the editor provide quick access to other parts of
a source file.

Find Symbol in the Source menu jumps to a symbol defined in the current file by
typing a fragment of its name.

Open From Project in the File menu is a similar interface for quickly opening
project files.

Source Browser provides module or class oriented display of the structure of your
code. Show both the Source Browser and Source Assistant for detailed
information about selected symbols.

Mini-search is a powerful keyboard-driven search and replace facility. The key
bindings listed in the Mini-search area of the Edit menu will display the search
entry area at the bottom of the screen.

Search in the Tools menu provides incremental text, wildcard, and regular
expression search and replace in selections and the current file.

Search in Files in the Tools menu provides wildcard and regular expression
search and replace in filtered sets of files, directories, named file sets, and within
the project.

Toolbar search is another quick way to search the current file.

Editing Code
Wing's editor focuses on fast error-free Python coding:

Auto-completion in Wing's editor speeds up typing and reduces coding errors.
The auto-completer uses Tab by default for completion, but this can be changed in
the Editor > Auto-Completion > Completion Keys preference.

Call Tips and Documentation shown in the Source Assistant update as you
move through your code or work in the shells.

Wing IDE Quick Start Guide

2

Auto-indent while typing matches the file's existing indentation. When multiple
lines are pasted, they are re-indented according to context (a single Undo reverts
any unwanted indentation change). Wing also provides an Indentation tool for
converting a file's indentation style.

Code Selection from the Edit > Select menu makes selecting whole statements,
blocks, or scopes a snap, before copying, editing, or searching through them.

Debugging Code
Wing's debugger is a powerful tool for finding and fixing bugs, understanding
unfamiliar code, and writing new code interactively. You can launch code from the
Debug menu or toolbar, or from the Python Shell (click on the bug icon in the top
right of the shell to enable debugging there).

Breakpoints can be set by clicking on the breakpoint margin of the editor and
debugging is started from the toolbar or Debug menu. The Stack Data tool is used
to inspect or change program data. Debug process I/O is shown in the Debug I/O
tool, or optionally in an external console.

Launch Configurations in the Project menu can be used with Named
Entry Points in the Debug menu define different runtime environments for
debugging, executing, and unit testing your code.

Other Features
Wing contains many other features, including:

Python Shell -- Wing's Python Shell lets you try out code in a sandbox process
kept isolated from Wing IDE and your debug process. Code run here can optionally
be debugged. To enable this, click the bug icon in the top right of the
Python Shell. The shell provides auto-completion, goto-definition, and is
integrated with the Source Assistant.

Running Command Lines in Wing's OS Commands tool makes it possible to set
up and easily execute external tools. This can also be used to set up a build
command that will be executed automatically before each debug sessions.

User Interface Customization in Preferences gives you control of the overall
layout and color of the IDE, among many other options. Right click on the tabs for
layout options, or drag tool and editor tabs to move them or create new splits. Right
click on the toolbar to configure which tools are visible or to add your own. Wing
also supports defining sharable color palettes and syntax colors.

Perspectives in Wing Pro let you save named tool panel configurations.

Many Other Features such as bookmarks, line editing, code folding, macros are
also available. You can also extend Wing IDE by writing Python scripts.

Wing IDE Quick Start Guide

3

http://wingware.com/doc/custom/qt-styles
http://wingware.com/doc/custom/syntax
http://wingware.com/doc/scripting/index

Note

We welcome feedback, which can be submitted with Submit Feedback in
Wing's Help menu, or by emailing at support@wingware.com

Related Documents
For more information see:

• Wing IDE Tutorial, a detailed guided tour for Wing IDE.
• How-Tos for Django, matplotlib, PyQt, wxPython, Plone, Autodesk Maya,

NUKE/NUKEX, PyGame, and many others
• Wing IDE Reference Manual, which describes Wing IDE in detail.

How-Tos for Web Development
The following How-Tos provide tips and short cuts for using a number of popular
web development frameworks with Wing IDE.

2.1. Using Wing IDE with Django

Note

"Wing is really the standard by which I judge other IDEs. It opens, it
works, and does everything it can do to stay out of my way so I can be
productive. And its remote debugging, which I use when I'm debugging
Django uWSGI processes, makes it a rock star!" -- Andrew M

Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Django, a powerful web development
framework. Wing provides auto-completion, call tips, goto-definition, find uses,
refactoring, a powerful debugger, unit testing, and many other features that help
you write, navigate, and understand Python code.

Wing IDE can also be used to step through and debug Django templates, and it
includes Django-specific plugin functionality to make it easier to create Django
projects and apps, set up Wing projects for use with Django, and manage routine
tasks. The debugger can be configured to launch Django from the IDE and to
reinitiate automatically when Django reload occurs.

How-Tos for Web Development

4

mailto:support@wingware.com
http://wingware.com/doc/intro/tutorial
http://wingware.com/doc/howtos/django
http://wingware.com/doc/howtos/matplotlib
http://wingware.com/doc/howtos/pyqt
http://wingware.com/doc/howtos/wxpython
http://wingware.com/doc/howtos/plone
http://wingware.com/doc/howtos/maya
http://wingware.com/doc/howtos/nuke
http://wingware.com/doc/howtos/pygame
http://wingware.com/doc/howtos/index
http://wingware.com/doc/manual
http://wingware.com/wingide/
http://www.djangoproject.com/

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now. To get started using Wing,
refer to the tutorial in the Help menu in Wing and/or the Wing IDE Quickstart
Guide.

Installing Django

The Django website provides complete instructions for installing Django.

Quick Start with Wing IDE Professional

If you have Wing IDE Professional and Django 1.4 or later, the fastest way to get
started using Wing IDE with Django is to use the provided Django extensions. If
you have Wing IDE Personal, skip ahead to the Manual Configuration section
below.

Existing Django Project

To set up a Wing IDE Professional project for an existing Django project:

1. Create a new project from the Project menu,
2. Add the Django site directory to the Wing project (so that manage.py and

settings.py (or settings package) are both in the project),
3. Wait until the Django menu appears in the menu bar, and
4. Select the Configure Project for Django item from that menu.

This sets the Python Executable in Project Properties (if it can be located), sets up
manage.py runserver 8000 as the main debug file, turns on child process
debugging in Project Properties (for debugging auto-reloaded code), adds
DJANGO_SITENAME and DJANGO_SETTINGS_MODULE to the environment in
Project Properties, adds the site directory to the Python Path in the Wing project,
ensures Django Template Debugging in Project Properties is enabled, turns on
TEMPLATE_DEBUG in your site's settings.py file (debugging templates will not
work without this), and sets the Default Test Framework in the Testing tab of
Project Properties so that Wing's Testing tool will invoke manage.py test.

If settings is a package in your project (instead of a settings.py file), you will need
to set TEMPLATE_DEBUG=True manually in the appropriate place(s) in your
settings.

Now you should be able to start Django in Wing IDE's debugger, set breakpoints in
Python code and Django templates, and reach those breakpoints in response to a
browser page load.

New Django Project

If you are starting a new Django project at the same time as you are setting up
your Wing IDE project:

How-Tos for Web Development

5

http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/howtos/quickstart
http://www.djangoproject.com/

1. Select Start Django Project from the Extensions sub-menu of the Project
menu.

2. You will be prompted for the location of django_admin.py, location to place
the new project, and the site name in the same entry area. Defaults for these
values are based on the current project contents, if a Django project is already
open.

3. Press Enter and Wing will set up a new Django project and your Wing IDE
project at the same time.

This runs django_admin.py startproject <sitename>, sets up settings.py to use
sqlite3 default database engine, adds django.contrib.admin to
INSTALLED_APPS, runs syncdb, and copies the default admin template
base_site.html from your Django installation into your site's templates/admin
directory.

Note that on Windows you will see an error that the superuser account could not
be set up. The error includes the command that needs to be run interactively. To
complete project creation, copy/paste this into a command console.

When project setup is completed, the command offers to create a new Wing IDE
project, add the files, and configure the project for use with Django as described in
the Existing Django Project sub-section above.

Django-specific Actions

The Django menu that auto-activates for Django projects also contains special
actions for running sync db, generating SQL for a selected app, running validation
checks, running unit tests, and restarting the integrated Python Shell with the
Django environment.

This menu also allows starting a new Django app. This action creates the app and
adds it to INSTALLED_APPS in settings.py. If settings is a package, you will
need to manually add the new Django app to INSTALLED_APPS in the
appropriate place(s) in your settings.

This functionality is implemented as an open source plugin that can be found in
scripts/django.py in the install directory listed in Wing's About box. This code can
be user-modified by working from the existing functionality as examples. For
detailed information on writing extensions for Wing IDE, see the Scripting and
Extending Wing IDE chapter.

How-Tos for Web Development

6

http://wingware.com/doc/scripting/index
http://wingware.com/doc/scripting/index

Usage Tips

Debugging Exceptions

Django contains a catch-all handler that displays exception information to the
browser. When debugging with Wing, it is useful to also propagate these
exceptions to the IDE. This can be done with a monkey patch as follows (for
example, in local_settings.py on your development systems):

import os
import sys

import django.views.debug

def wing_debug_hook(*args, **kwargs):
 if __debug__ and 'WINGDB_ACTIVE' in os.environ:
 exc_type, exc_value, traceback = sys.exc_info()
 sys.excepthook(exc_type, exc_value, traceback)
 return old_technical_500_response(*args, **kwargs)

old_technical_500_response = django.views.debug.technical_500_response
django.views.debug.technical_500_response = wing_debug_hook

The monkey patch only activates if Wing's debugger is active and assumes that
the Report Exceptions preference is set to When Printed.

Debugging Django Templates

Note

Django 1.9 reimplemented the template engine in a way that partially broken
template debugging due to missing information in the new template
implementation. Currently stopping in templates works but not in tags
invoked via extends since there is no way to find the correct template file
name in that context. See https://code.djangoproject.com/ticket/25848.

The above-described project setup scripts enable template debugging
automatically. You should be able to set breakpoints in any file that contains {%%}
or {{}} tags, and the debugger will stop at them.

When debugging Django templates is enabled, Wing will replace the Python stack
frames within the template invocation with frames for the template files, and the
locals shown in the Stack Data tool will be extracted from the template's runtime
context. When working in a template stack frame, the Debug Probe, Watch, and
other tools will operate in the environment that is displayed in the Stack Data tool.

How-Tos for Web Development

7

https://code.djangoproject.com/ticket/25848

Note that stepping is tag by tag and not line by line, but breakpoints are limited to
being set for a particular line and thus match all tags on that line.

Stepping in the debugger while a template invocation is active will be limited to
templates and any user code or code within the contrib area of your Django
installation. If you need to step into Django internals during a template invocation,
you will need to disable Django template debugging in your project properties, set
a breakpoint at the relevant place in Django, and restart your debug process.

Notes on Auto-Completion

Wing provides auto-completion on Python code and Django templates. The
completion information is based on static analysis of the files unless the debugger
is active and paused and the template or Python code being edited are on the
stack. In that case, Wing sources the information shown in the auto-completer and
Source Assistant from live runtime state. As a result, it is often more informative to
work with the debugger paused or at a breakpoint, particularly in Django templates
where static analysis is not as effective as it is in Python code.

Running Unit Tests

In Wing IDE Professional, the Default Testing Framework under the Testing tab
of Project Properties can be set to Django Tests to cause the Testing tool in
Wing to run manage.py test and display the results. Particular tests can be
debugged by selecting them and using Debug in the Testing menu (or
right-clicking on them).

If unit tests need to be run with different settings, the environment variable
WING_TEST_DJANGO_SETTINGS_MODULE can be set to replace
DJANGO_SETTINGS_MODULE when unit tests are run.

Django with Buildout

When using Django with buildout, Wing won't auto-detect your project as a Django
project because the manage.py file is instead named bin/django. To get it
working, copy bin/django to manage.py in the same directory as settings.py or
the settings package.

Manual Configuration

This section describes manual configuration of Wing IDE projects for use with
Django. If you are using Wing IDE Professional, first see the above Quick Start for
Wing IDE Professional.

How-Tos for Web Development

8

Configuring the Project

To get started, create a new project from the Project menu, add your files, and
determine if the correct Python is being found by displaying the Python Shell tool
in Wing. If the wrong Python is being used, alter the Python Executable in Project
Properties (in the Project menu) and restart the shell from its Options menu.

You may also want to set the DJANGO_SITENAME and
DJANGO_SETTINGS_MODULE environment variables in Project Properties.

Configuring the Debugger

There are two ways to debug Django code: Either configure Django so it can be
launched by Wing's debugger (the recommended method), or cause Django to
attach to Wing from the outside as code that you wish to debug is executed.

Launching from Wing

When Django is launched from Wing, you must enable Debug Child Processes
under the Debug/Execute tab of Project Properties so that Wing can debug
auto-reloaded processes. This way Django can immediately load changes you
make to code without requiring a restart of Django.

Next find manage.py in your project, right click to select File Properties..., and set
the Run Arguments to your desired launch arguments. For example:

runserver 8000

Child process debugging is not available in Wing IDE Personal, where instead you
will need to add --noreload to the run arguments for manage.py, like this:

runserver --noreload 8000

Other options can be added here as necessary for your application.

Some older versions of Django may also require adding --settings=devsettings to
the arguments for runserver, in order for debugging to work. If Wing is not be able
to stop on any breakpoints, try adding this.

Launching Outside of Wing

Another method of debugging Django is to use wingdbstub.py to initiate
debugging when Django is started from outside of Wing IDE. This method can be
used to debug a Django instance remotely or to enable debugging reloaded
Django processes with Wing IDE Personal.

This is done by placing a copy of wingdbstub.py, which is located in the install
directory listed in Wing's About box, into the top of the Django directory, where
manage.py is located. Make sure that WINGHOME is set inside wingdbstub.py; if

How-Tos for Web Development

9

not, set it to the location of your Wing IDE installation (on OS X, to the name of
Wing's .app folder). This allows the debug process to find the debugger
implementation.

Next, place the following code into files you wish to debug:

import wingdbstub

Then make sure that the Accept Debug Connections preference is enabled in
Wing and start Django. The Django process should connect to Wing IDE and stop
at any breakpoints set after the import wingdbstub.

When code is changed, just save it and Django will restart. The debugger will
reconnect to Wing IDE once you request a page load in your browser that leads to
one of your import wingdbstub statements.

To debug remotely, refer to Remote Debugging in the Wing IDE reference manual.

Debugging Django Templates

To enable debugging of Django templates, you will need to take the following two
steps:

1. Set TEMPLATE_DEBUG to True in your Django application's settings.py file
or settings package,

2. Be sure that Wing IDE's Enable Django Template Debugging setting in your
project's properties is enabled. When you change this property, you will need
to restart your Django debug process if one is already running.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Django home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

2.2. Using Wing IDE with web2py
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code and HTML templates that are written for web2py, an open
source web development framework. Wing provides auto-completion, call tips, a
powerful debugger, and many other features that help you write, navigate, and
understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

How-Tos for Web Development

10

http://wingware.com/doc/debug/remote-debugging
http://wingware.com/doc/manual
http://www.djangoproject.com/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.web2py.com/
http://wingware.com/products
http://wingware.com/wingide/trial

To get started using Wing, refer to the Tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

Wing IDE allows you to debug Python code and templates running under web2py
as you interact with it from your web browser. Breakpoints set in your code from
the IDE will be reached, allowing inspection of your running code's local and global
variables with Wing's various debugging tools. In addition, in Wing IDE Pro, the
Debug Probe tab allows you to interactively execute methods on objects and get
values of variables that are available in the context of the running web app.

There is more than one way to do this, but in this document we focus on an "in
process" method where the web2py server is run from within Wing, as opposed to
attaching to a remote process.

Setting up a Project

Download and install web2py. On some OSes you can use the regular install, but
at least on Windows you need to use the web2py sources instead because the
regular install is missing modules necessary for debugging. When the sources are
being used, you will also need to install Python if you don't already have it.

Then launch Wing and create a new project from the Project menu. Select
web2py as your project type, and point the Python Executable at the Python
executable (python or python.exe) used for web2py. Click OK and then save the
project (for example, as web2py.wpr within the web2py directory).

Next add the web2py directory to your project by going to the Project view, right
clicking, and selecting Add Directory. After the project view populates, find and
right click on the file web2py.py and select Set As Main Debug File.

On Windows, if you are working from sources, you may also need to install
pywin32

Debugging

You can now debug web2py by clicking on the green Debug icon in Wing's toolbar
and waiting for the web2py console to appear. Enter a password and start the
server as usual.

Once web2py is running, open a file in Wing that you know will be reached when
you load a page of your web2py application in your web browser. Place a
breakpoint in the code and load the page in your web browser. Wing should stop at
the breakpoint. Use the Stack Data tool or Debug Probe (in Wing Pro) to look
around.

An example is to set a breakpoint in
applications/welcome/views/default/index.html, which is loaded when you go to

How-Tos for Web Development

11

http://wingware.com/doc/intro/tutorial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code
http://sourceforge.net/projects/pywin32/

the URL http://127.0.0.1:8000/welcome/default/index (assuming local web2py
install running on port 8000).

Notice that breakpoints work both in Python code and HTML template files.

Wing's Debug Probe (in the Tools menu) is similar to running a shell from web2py
(with python web2py.py -S myApp -M) but additionally includes your entire
context and provides auto-completion. You can easily inspect or modify variables,
manually make function calls, and continue debugging from your current context.

Setting Run Arguments

When you start debugging, Wing will show the File Properties for web2py.py.
This includes a Run Arguments field under the Debug tab where you can add any
web2py option. For example, adding -a '<recycle>' will give you somewhat faster
web2py startup since it avoids showing the Tk dialogs and automatically opening a
browser window. This is handy once you already have a target page in your
browser. Run python web2py.py --help for a list of all the available options.

To avoid seeing the File Properties dialog each time you debug, un-check the
"Show this dialog before each run" check box. You can access it subsequently with
the Current File Properties item in the Source menu or by right clicking on the
editor and selecting Properties.

Hung Cron Processes

Web2py may spawn cron sub-processes that fail to terminate on some OSes when
web2py is debugged from Wing IDE. This can lead to unresponsiveness of the
debug process until those sub-processes are killed. To avoid this, add the
parameter -N to prevent the cron processes from being spawned.

Better Static Auto-completion

Working in your code when the debugger is not runnng by default misses some
auto-completion options because of how web2py works. For example,
auto-completion after typing db. will fail because db is not explicitly defined. To fix
this, you can add some hints for Wing as follows at the top of the file:

XXX This makes auto-completion work; also need to alter Python Path
XXX in project properties.
if 0:
 import db

Then go into Project properties in the Project menu and add the following path
under Python Path:

/path/to/web2py/applications/examples/models

How-Tos for Web Development

12

Replace /path/to according to where you unpacked web2py. This path may vary
depending on which app you are working with.

Now, typing db. should bring up an auto-completer with the contents of db even if
the debugger is not running.

Exception Reporting in Old Web2Py Versions

This section is only relevant if you are using a very old web2py, before version 1.62
.

As shipped, web2py version 1.61 and earlier contain a catch-all exception handler
to report unexpected errors in your web browser as tickets. This is useful when
tracking problems on a live site.

To make debugging more convenient, change the except Exception, exception
clause in the definition of restricted at the end of the file src/gluon/restricted.py
in your web2py installation to read as follows:

except Exception, exception:
 # XXX Show exception in Wing IDE if running in debugger
 if __debug__ and 'WINGDB_ACTIVE' in os.environ:
 etype, evalue, tb = sys.exc_info()
 sys.excepthook(etype, evalue, tb)
 raise RestrictedError(layer, code, '', environment)

Now you will get exceptions reported in Wing's Exceptions tool and can
conveniently move up or down the stack and inspect the program state at the time
of the exception.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

2.3. Using Wing IDE with Flask
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Flask. Wing provides auto-completion,
call tips, a powerful debugger, and many other features that help you write,
navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now. To get started using Wing,
refer to the tutorial in the Help menu in Wing and/or the Wing IDE Quickstart
Guide.

How-Tos for Web Development

13

http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide/
http://flask.pocoo.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/howtos/quickstart

Debugging in Wing IDE

To debug Flask in Wing you need to turn off Flask's built-in debugger, so that
Wing's debugger can take over in reporting exceptions.

To do this, you can set up your main entry point as in the following example:

from flask import Flask
app = Flask(__name__)

...

if __name__ == "__main__":
 from os import environ
 if 'WINGDB_ACTIVE' in environ:
 app.debug = False
 app.run(use_reloader=True)

Notice that this turns off Flask's debugging support only if Wing IDE's debugger is
present.

The use_reloader argument is optional, but speeds up debugging considerably
because Flask won't need a restart to load code changes. If this option is set to
True you will need to enable Debug Child Processes under the Debug/Execute
tab in Project Properties from the Project menu. Otherwise the reloaded process
will not be debugged. This option is only available under Wing IDE Professional;
app.run() should be used with Wing IDE Personal.

Once this is done, use Set Main Debug File in the Debug menu to set this file as
your main debug file in Wing IDE. Then you can start debugging from the IDE, and
load pages from a browser to reach breakpoints or exceptions.

If you did not set the use_reloader argument to app.run() to True then you will
need to use Restart Debugging in the Debug menu or the restart icon in the
toolbar to load changed code into Flask.

Passing the --no-debug flag or setting environment variable FLASK_DEBUG=0
are other documented ways to turn of Flask's debug support, although we've had
reports of --no-debug failing to function as expected.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Flask home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

How-Tos for Web Development

14

http://wingware.com/doc/manual
http://flask.pocoo.org/
http://wingware.com/doc/howtos/quickstart

2.4. Using Wing IDE with Pyramid
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Pyramid, a powerful web development
system. Wing provides auto-completion, call tips, a powerful debugger, and many
other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now. To get started using Wing,
refer to the tutorial in the Help menu in Wing and/or the Wing IDE Quickstart
Guide.

Installing Pyramid

Please see the Pyramid website (part of the Pylons project), which provides
complete instructions for installing the Pyramid framework. The procedure varies
slightly by OS.

Like any Python package, Pyramid will install itself using whichever instance of
Python runs the installer script. You should be using a Python version at least 2.6.

Pyramid projects are typically installed inside of a virtualenv, to maintain a
"sandboxed" installation separate from your main Python installation. This allows
Python packages that you install as part of your Pyramid project to be kept entirely
separate from your system's main Python environment, and from any other
virtualenvs that you may have. Creating or removing a virtualenv is just a couple of
file system commands, so it's easy and quick to start a new one just to test an
alternative configuration of your project. This makes it very easy to test "what-if"
scenarios based on installing different versions of the packages relied upon by
your project. For example, you could use a new virtualenv if you wanted to try
serving your app using a newly released version of your ORM layer or your
templating engine, or a newly released or beta version of Pyramid itself.

This How-To was developed with Pyramid version 1.3.

Configuring your Wing IDE Project

This section assumes your Pyramid project is called 'project' and is installed in a
virtualenv at .../project where ... is the full path to the location of your project. We
also assume that you are running Wing IDE, that you have your current Wing
Project open and saved as .../project/project.wpr (or whatever you chose to name
your project).

Make sure that your Pyramid project directory (which should be the same as your
virtualenv) is added to your Wing project with Add Directory in the Project menu,
and that you have saved the project. There is no need to add the entire .../project
directory to the Wing project, as that would include the entire project/bin area.
Typical Pyramid project structure looks like project/Project/project. The Project

How-Tos for Web Development

15

http://wingware.com/wingide/
http://www.pylonsproject.org/projects/pyramid
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/howtos/quickstart
http://www.pylonsproject.org/projects/pyramid

(upper case) directory holds setup and README information for your project and
the configuration files, ending in .ini, which allow you to start your project's server
with different settings.

Ordinarily you'll have project/Project/development.ini which contains the settings
(including enabling lots of logging, etc) that you run during development activities,
and project/Project/production.ini which contains different settings (turning off
most logging and any development-related security vulnerabilities such as open
administrative access) that you'll use in production. But you can also create
additional .ini files for any purpose, such as when you want to simulate serving
your project under different conditions, e.g. connecting to a different database
server.

The one file you'll need to add to your Wing project from the .../project level of
your directory structure is .../project/bin/pserve. Then open it in Wing and set it as
Main Debug File from the Debug menu.

Next open up the Python Shell tool and type import sys followed by
sys.executable to check whether Wing is using the Python that will be running the
Pyramid server. If not, verify that the shell's status message does not indicate that
it needs to be restarted to load configuration changes. If this message is present,
restart the shell from its Options menu and try again. If the message is not
present, open Project Properties and set the Python Executable, then restart the
shell again and verify that sys.executable is correct. The interpreter used in this
step will vary depending on whether your .../project directory is enabled as a
virtualenv or not.

Once this is done, Wing's source analysis engine should be able to find and
analyze your code and Pyramid. Analysis status messages may show up in the
lower left of Wing's main window while analysis is in progress.

Debugging

To debug code running under Pyramid, place a copy wingdbstub.py (from the
install directory listed in Wing's About box) into your project/Project directory, the
same directory that holds your .ini files and which is set as the Initial Directory for
your Wing project. Near the top of any Python file you wish to debug, place the
following line:

import wingdbstub

Also click on the bug icon in the lower left of the main window and make sure that
Accept Debug Connections is checked.

Then set a breakpoint on any location in your project's code that you know will be
reached when an HTTP or AJAX request is made to your server, depending on
what user actions in the browser you intend to follow with debugging. A common

How-Tos for Web Development

16

breakpoint location would be in one of what Pyramid calls your View Callables,
which are the Python classes and/or methods called by the webserver depending
on the URL and other parameters of the request. Or, if you need to debug lower
levels of the stack, you can set breakpoints in the Pyramid source files themselves,
or in the source of any other package (such as your ORM or template rendering
system) that supports the handling of your web requests.

With a terminal window open, start your Pyramid server as you usually would, by
issuing the command:

pserve --reload development.ini

from within your project/Project directory. --reload is a convenient option that
restarts the server whenever you've saved any changes to your Pyramid project's
source files. You don't have to use it, but Wing's debugger is still able to attach and
operate correctly if you do. If you are using a different .ini file such as a
production.ini or testing.ini, supply its name to pserve instead.

Load http://localhost:5000/ or the page you want to debug in a browser. The port
that your server uses (5000 in this example) is set in your .ini file, in a section that
looks like the following:

[server:main]
use = egg:waitress#main
host = 0.0.0.0
port = 5000

Wing should stop on your breakpoint. Be sure to look aroung a bit with the
Stack Data tool, and in Wing Pro the Debug Probe (a command line that works in
the runtime state of your current debug stack frame). All the debugging tools are
available from the Tools menu, if not already shown.

Notes on Auto-Completion

Wing provides auto-completion on Python code and within basic HTML elements,
and can help a lot within the various templating languages that can be used in a
Pyramid project.

The autocomplete information available to Wing is based on static analysis of your
project files and any files Wing can find on your Python Path or via imports in other
Python files.

Additionally, when the debugger is active and paused, Wing usess introspection of
the live runtime state for any template or Python code that is active on the stack.
As a result, it is often more informative to work on your source files while Wing's
debugger is active and paused at a breakpoint, exception, or anywhere in the
source code reached by stepping.

How-Tos for Web Development

17

Debugging Mako Templates

A good choice of templating engine for the Pyramid projects of a Wing IDE user is
Mako, because it allows the full syntax of Python in expression substitutions and
control structures and this maximizes Wing's ability to help out. Mako templates
are simply marked-up HTML files, and as such they cannot be directly stepped
through using the debugger. However, they are compiled to .py files whenever the
source file is altered, and you can set Wing debug breakpoints in the .py files
corresponding to your templates.

Debugging Mako templates with Wing IDE requires one optional setting that can be
made in your .ini file, usually development.ini. Under the [app:main] section, add
the following line:

mako.module_directory=%(here)s/data/templates

This location will exist in most typical Pyramid projects. If yours does not have it
you can create it, or point the setting to an existing location of choice. Without this
setting (by default), mako templates are compiled in memory and not cached to
disk. With this setting in place, your mako templates will be compiled to actual .py
files in the desired location, with the same filename as the original template plus
the .py extension appended to the end.

You should be able to set breakpoints within these .mako.py files just like
anywhere else in your project. If necessary, add the following at the top of the
template file:

<%! import wingdbstub %>

This uses mako's module-level import facility to drop the import directly into the
compiled .mako.py file, and will prevent the import from disappearing when a
template is automatically recompiled after its source file is changed.

Your .mako.py files will not be in one-to-one line correspondence with their .mako
source files, but mako inserts tracking comments indicating original source line
numbering.

Debugging without wingdbstub.py (experimental)

In some cases it may be more convenient to debug your Pyramid project files by
launching your Pyramid server directly from Wing, rather than using
wingdbstub.py as described above. In this approach, you use the Debug Start or
Restart commands to start and restart your server, instead of launching it on the
command line outside of Wing.

To try this, verify that you have set the Main Debug File to .../project/bin/pserve
by opening the file, and selecting Set Current as Main Debug File from the
Debug menu.

How-Tos for Web Development

18

http://www.makotemplates.org

Then right click on the pserve file in the editor or Project tool and use Properties...
to set its Run Arguments to development.ini or whatever .ini file you want to use
with debugging, and then set the Initial Directory property to .../project/Project or
wherever your .ini files are located.

Make sure that the --reload option is not supplied in the Run Arguments that you
configure, as this will interfere with the debugger. You will need to press the restart
debugging icon in the toolbar or select Restart Debugging from the Debug menu
to restart the Pyramid server after making changes to Python files or templates.

Once this is done, press the green Debug icon in the toolbar or use
Start/Continue in the Debug menu to start debugging. The Debug I/O tool in
Wing, available in the Tools menu, will display any output from the server.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Pyramid documentation
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

Thanks to Eric Ongerth for providing the initial version of this How-To.

2.5. Using Wing IDE with Plone

Note

"The best solution for debugging Zope and Plone" -- Joel Burton,
Member, Plone Team

Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Plone, a powerful web content
management system. Wing provides auto-completion, call tips, debugger, and
many other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

How-Tos for Web Development

19

http://wingware.com/doc/manual
http://docs.pylonsproject.org/en/latest/index.html
http://wingware.com/doc/howtos/quickstart
http://wingware.com/
http://www.plone.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

Introduction

The instructions below are for the Plone 4 unified installer. If you are using an older
version of Plone or use a source installation of Plone 4 that makes use of old style
Products name space merging, please refer instead to the instructions for Using
Wing IDE with Zope.

Note: We strongly discourage running Wing or development instances of Plone as
root or administrator. This creates unnecessary security risks and will cause
debugger configuration problems.

Configuring your Project

To set up your project, simply set the Main Debug File in Project Properties to
the file zinstance/bin/instance within your Plone installation. This may instead be
zeocluster/bin/client1 with a ZEO install, or whatever name is given in the .cfg
file. Wing will read the sys.path updates from that file so that it can find your Plone
modules.

You may also need to set Python Executable in Project Properties (accessed
from the Project menu) to the Python that is used in your Plone instance. For
example, in a standalone install this may be Python2.6/bin/python or similar. The
full path can be found by looking at the top of many of the scripts in zinstance/bin
or zeocluster/bin.

For Plone 4, do not use the Zope2 support in Project Properties under the
Extensions tab. This is not needed unless your Plone installation still uses old
style Product name space merging.

Debugging with WingDBG

There are two ways to configure debugging. The method described in this
sub-section uses a Zope control panel to turn debugging on and off and will debug
only requests to a particular debug port. This is the most common way in which
Plone is debugged with Wing IDE.

To get debugging working install WingDBG, the Wing debugger product, from
zope/WingDBG-6.0.2.tar in your Wing installation by unpacking it into
zinstance/products (or zeocluster/products in a zeo install).

Then edit your etc/zope.conf to change enable-product-installation off at the
end to instead read enable-product-installation on. In a zeo install this file is
located at zeocluster/parts/client1/etc/zope.conf.

Finally, click on the bug icon in the lower left of the IDE window and turn on
Accept Debug Connections so the debugger listens for connections initiated from
the outside.

Then start Plone and go into the Zope Management Interface from
http://localhost:8080/ , click on Control Panel, and then on Wing Debug Service

How-Tos for Web Development

20

http://wingware.com/doc/howtos/zope
http://wingware.com/doc/howtos/zope
http://localhost:8080/

at the bottom. From here you can turn on debugging. The bug icon in lower left of
Wing IDE's window should turn green after a while and then any page loads via
port 50080 (http://localhost:50080/) will be debugged and will reach breakpoints.
This port and other debugger options are configurable from the WingDBG control
panel.

WingDBG in buildout-based Plone installations

In some new buildout-based Plone settings, WingDBG will not load until the
buildout.cfg (generated by the template plone4_buildout) is edited to add the
following just above [zopepy]:

products = ${buildout:directory}/products

Then rerun bin/buildout -N which will add a line like the following to your
parts/instance/etc/zope.conf file:

products /path/to/your/products''

You will also need to add the specified products directory manually, and then place
WingDBG in it.

WingDBG as an Egg

Encolpe Degoute has been maintaining a version of WingDBG that is packaged as
an egg.

Creating an egg yourself is also possible as follows:

paster create -t plone Products.WingDBG

Then copy WingDBG/* to Products.WingDBG/Products/WingDBG.

Debugging Plone from the IDE

It is also possible to debug Plone without WingDBG by launching Plone directly
from the IDE. This technique may be more convenient in some cases, and debugs
all requests to the Plone instance (not just those on a special debug port).

To debug this way, set zinstance/bin/instance (or zeocluster/bin/client1 in a zeo
install) in your Plone installation as the Main Debug File in Project Properties
(this should already be done from configuring your project earlier). Then right click
on the file in the editor or Project view, select Properties, and set Run Arguments
under the Debug tab to common.

Note that this solution can take more time to launch than debugging with WingDBG
since the entire startup process is debugged.

How-Tos for Web Development

21

http://localhost:50080/
http://plone.org/products/wingdbg/
http://plone.org/products/wingdbg/

Related Documents

Wing IDE provides many other options and tools. For more information:

• Using Wing IDE with Zope, which describes how to set up Zope for use with
Wing IDE.

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Plone home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.
• Plone Bootcamps offer comprehensive training on Plone using Wing IDE

throughout the course. Students learn how to set up and use Wing IDE with
Plone.

2.6. Using Wing IDE with Zope

Note

"The best solution for debugging Zope and Plone" -- Joel Burton,
Member, Plone Team

Wing IDE is an integrated development environment that can be used to develop,
test, and debug Python code running under Zope2 or Zope3. Wing provides
auto-completion, call tips, and other features that help you write, navigate, and
understand Zope code. Wing's debugger can be used to debug code in the context
of the running Zope server, in response to page loads from a browser, and can
work with Zope's code reloading features to achieve a very short edit/debug cycle.

Wing's code intelligence and debugging support work with Products, External
Methods, file system-based Scripts and Zope itself. Wing IDE is also useful for
Zope-based frameworks like Plone (see Plone Quickstart).

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Before Getting Started

Note: This guide is for Zope2 users. If you are using Zope3, please try z3wingdbg
by Martijn Pieters or refer to Debugging Externally Launched Code in the users
manual to set up Zope3 debugging manually.

How-Tos for Web Development

22

http://wingware.com/doc/howtos/zope
http://wingware.com/doc/manual
http://www.plone.org/
http://wingware.com/doc/howtos/quickstart
http://plonebootcamps.com
http://wingware.com/wingide
http://www.plone.org/
http://wingware.com/doc/howtos/plone
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://www.zopatista.com/projects/z3wingdbg
http://wingware.com/doc/debug/debugging-externally-launched-code

Limitations: Wing IDE cannot debug DTML, Page Templates, ZCML, or Python
code that is not stored on the file system.

Security Warning: We advise against using the WingDBG product on production
web servers. Any user connected to the Wing IDE debugger will (unavoidably)
have extensive access to files and data on the system.

Upgrading from earlier Wing versions

If you are upgrading from an older version of Wing and have previously used Wing
with your Zope installation(s), you need to manually upgrade WingDBG in each
Zope instance. Otherwise, debugging may fail.

The easiest way to do this is to go to the Zope Control Panel, click on Wing
Debug Service, and then Remove the control panel. Then restart Zope. Next, go
into your Wing project's Extension Tab, verify that you've got the
Zope Instance Home set correctly, and press Apply. This will offer to re-install
WingDBG with the latest version and will configure it to point to the new version of
Wing.

Quick Start on a Single Host

To use Wing IDE with Zope running on the same host as the IDE:

• Install Zope -- You can obtain Zope from zope.org. Version 2.5.1 or newer will
work with Wing.

• Install Wing IDE -- You will need Wing IDE 2.1 or later. See Installing for
details.

• Configure Wing IDE -- Start Wing, create or open the project you wish to use
(from the Project menu). Then use the Extensions tab in Project Properties
to enable Zope2/Plone support and to specify the Zope2 Instance Home to
use with the project. Wing will find your Zope installation by reading the file
etc/zope.conf in the provided Zope instance. Once you press Apply or OK in
the Project Properties dialog, Wing will ask to install the WingDBG product and
will offer to add files from your Zope installation to the project. If your zope
instance is generated by buildout, set the main debug file to the bin/instance
file (bin\instance-script.py on Windows) in your buildout tree by opening the
file in Wing and select Set Current as Main Debug File in the Debug menu.
This will set up the effective sys.path for the instance.

• Configure the WingDBG Product -- Start or restart Zope and log into
http://localhost:8080/manage (assuming default Zope configuration). The Wing
Debugging Service will be created automatically on startup; you can find it
under the Control Panel of your server. If the Wing Debugging Service does
not appear in the Control Panel, you may need to enable product loading in
your zope.conf file by changing enable-product-installation off to
enable-product-installation on.

How-Tos for Web Development

23

http://www.zope.org
http://wingware.com/downloads
http://wingware.com/doc/install/installing
http://localhost:8080/manage

Starting the Debugger

Proceed to the Wing Debugger Service by navigating to the Control Panel, then
selecting the 'Wing Debugging Service'. Click in the "Start" button. The Wing IDE
status area should display "Debugger: Debug process running".

Note that you can configure WingDBG to start and connect to the IDE
automatically when Zope is started from the Advanced configuration tab.

Problems? See the Trouble-Shooting Guide below.

Test Drive Wing IDE

Once you've started the debugger successfully, here are some things to try:

Run to a Breakpoint -- Open up your Zope code in Wing IDE and set a breakpoint
on a line that will be reached as the result of a browser page load. Then load that
page in your web browser using the port number displayed by the Zope
Management Interface after you started the debugger. By default, this is 50080, so
your URL would look something like this:

http://localhost:50080/Rest/Of/Usual/Url

Explore the Debugger Tools -- Take a look at these tools available from the
Tools menu:

• Stack Data -- displays the stack, allows selecting current stack frame, and
shows the locals and globals for that frame.

• Debug Probe (Wing Pro only) -- lets you interact with your paused debug
process using a Python shell prompt

• Watch (Wing Pro only) -- watches values selected from other value views (by
right-clicking and selecting one of the Watch items) and allows entering
expressions to evaluate in the current stack frame

• Modules (Wing Pro only) -- browses data for all modules in sys.modules
• Exceptions -- displays exceptions that occur in the debug process
• Debug I/O -- displays debug process output and processes keyboard input to

the debug process, if any

Continue the Page Load -- When done, select Start / Continue from the Debug
menu or toolbar.

Try Pause -- From Wing, you can pause the Zope process by pressing the pause
icon in the toolbar or using Pause from the Debug menu. This is a good way to
interrupt a lengthy computation to see what's going on. When done between page
loads, it pauses Zope in its network service code.

Other Features -- Notice that Wing IDE's editor contains a source index and
presents you with an auto-completer when you're editing source code. Control-click

How-Tos for Web Development

24

on a source symbol to jump to its point of definition (or use Goto Selected Symbol
in the Source menu). Wing Pro also includes a Source Assistant and Source
Browser. The Source Assistant will display context appropriate call tips and
documentation. Bring up the Source Browser from the Tools menu to look at the
module and class structure of your code.

Setting Up Auto-Refresh

When you edit and save Zope External Methods or Scripts, your changes will
automatically be loaded into Zope with each new browser page load.

By default, Zope Products are not automatically reloaded, but it is possible to
configure them to do so. This can make debugging much faster and easier.

Take the following steps to take advantage of this feature:

• Place a file called refresh.txt in your Product's source directory (for example,
Products/MyProductName inside your Zope installation). This file tells Zope
to allow refresh for this product.

• Open the Zope Management Interface.
• Expand the Control Panel and Products tabs on the upper left.
• Click on your product.
• Select the Refresh tab.
• Check the "Auto refresh mode" check box and press "Change".
• Make an edit to your product source, and you should see the changes you

made take effect in the next browser page load.

Limitations: Zope may not refresh code if you use import statements within
functions or methods. Also, code that manages to retain references to old code
objects after a refresh (for example, by holding the references in a C/C++
extension module) will not perform as expected.

If you do run into a case where auto-reload causes problems, you will need to
restart Zope from the Zope Management Interface's Control Panel or from the
command line. Note that pressing the Stop button in Wing only disconnects from
the debug process and does not terminate Zope.

Alternative Approach to Reloading

The refresh.txt techique for module reloading is discouraged in the Plone
community. Another option for reloading both Zope and Plone filesystem-based
code is plone.reload available from pypi at
http://pypi.python.org/pypi/plone.reload. plone.reload will allow you to reload
Python code that has been changed since the last reload, and also give you the
option to reload any zcml configuration changes.

If you are using buildout, add plone.reload to the eggs and zcml sections of your
buildout.cfg and re-run buildout.

How-Tos for Web Development

25

http://pypi.python.org/pypi/plone.reload

To use plone.reload, assuming Zope is running on your local machine at port
8080, log into the ZMI as a Manager user, then go to
http://localhost:8080/@@reload on your Zope instance with a web browser
(append @@reload to the Zope instance root, not your Plone site if you are using
Plone).

Notes:

• If you are using Plone, your Plone product's profile config files (*.xml files) get
loaded through the ZMI at /YourPlone/portal_setup in the import tab.

• Code that uses a @decorator will still likely require a restart.

Setting up Remote Debugging

Configuring Wing for remote debugging can be complicated, so we recommend
using X11 (Linux/Unix) or Remote Desktop (Windows) to run Wing IDE on the
same machine as Zope but display it remotely. When this is not possible, you can
set up Wing to debug Zope running on another machine, as described below:

• Set up File Sharing -- You will need some mechanism for sharing files
between the Zope host and the Wing IDE host. Windows file sharing, Samba,
NFS, and ftp or rsync mirroring are all options. For secure file sharing via SSH
on Linux, try sshfs.

• Install Wing on the Server -- You will also need to install Wing on the host
where Zope is running, if it is not already there. No license is needed for this
installation, unless you plan to also run the IDE there. If there is no binary
distribution of Wing available for the operating system where Zope is running,
you can instead install only the debugger libraries by building them from
source code (contact Wingware for details).

• Basic Configuration -- Follow the instructions for Single-Host Debugging
above first if you have not already done so. Then return here for additional
setup instructions.

• Configure Allowed Hosts -- You will need to add the IP address of the Zope
host to the Allowed Hosts preference in Wing. Otherwise Wing will not accept
your debug connections.

• Configure File Mapping -- Next, set up a mapping between the location of the
Zope installation on your Zope host and the point where it is accessible on you
Wing IDE host. For example, if your Zope host is 192.168.1.1 Zope is installed
in /home/myuser/Zope on that machine, and /home/myuser is mounted on
your Wing IDE host as e:, you would add a Location Map preference setting
that maps 192.168.1.1 to a list containing /home/myuser/Zope and e:/Zope.
For more information on this, see File Location Maps and Location Map
Examples in the Wing IDE manual.

How-Tos for Web Development

26

http://localhost:8080/@@reload
http://fuse.sourceforge.net/sshfs.html
http://wingware.com/doc/debug/file-location-maps
http://wingware.com/doc/debug/file-location-map-example
http://wingware.com/doc/debug/file-location-map-example

• Set the Zope Host -- Go into Project Properties and set the Zope Host to
match the host name used in configuring the File Location Map in the previous
step. This is used to identify which host mapping should be applied to file
names read from the zope.conf file.

• Modify WingDBG Configuration -- When debugging remotely, the value
given to WingDBG for the Wing Home Directory must be the location where
Wing is installed on the Zope host (the default value will usually need to be
changed).

• Check Project Configuration -- Similarly, the paths identified in Project
Properties should be those on the host where Wing IDE is running, not the
paths on the Zope host.

Trouble Shooting Guide

You can obtain additional verbose output from Wing IDE and the debug process as
follows:

• If Zope or Plone on Windows is yielding a Site Error page with a
notFoundError when run under Wing's debugger, you may need to go into the
Zope Management Interface and delete the access rule (... accessRule.py ...).
Now, Zope/Plone runs on port 8080, does not alter the configuration of port 80,
and will work properly with Wing's debug port (50080 by default). If the URL for
your front page is http://localhost:8080/default/front-page, the Wing IDE debug
url will always be the same but with the different port:
http://localhost:50080/default/front-page (Thanks for Joel Burton for this tip!)

• Go into the Wing Debugging Service in the Zope Management Interface and
set Log file under the Configure tab. Using <stdout> will cause logging
information to be printed to the console from which Zope was started.
Alternatively, set this to the full path of a log file. This file must already exist for
logging to occur.

• Restart Zope and Wing and try to initiate debug.
• Inspect the contents of the log. If you are running Zope and Wing IDE on two

separate hosts, you should also inspect the ide.log file on the Wing IDE host
(located in the User Settings Directory). It contains additional logging
information from the Wing IDE process.

For additional help, send these errors logs to support at wingware.com.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Zope home page, which contains much additional information for Zope

programmers.

How-Tos for Web Development

27

http://localhost:8080/default/front-page
http://localhost:50080/default/front-page
http://wingware.com/doc/install/user-settings-dir
mailto:support@wingware.com
http://wingware.com/doc/manual
http://www.zope.org

• Quick Start Guide and Tutorial which contain additional basic information
about getting started with Wing IDE.

2.7. Using Wing IDE with Turbogears
Wing IDE is an integrated development environment that can be used to develop,
test, and debug Python code that is written for Turbogears, a powerful web
development system. Wing provides auto-completion, call tips, a powerful
debugger, and many other features that help you write, navigate, and understand
Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now. To get started using Wing,
refer to the tutorial in the Help menu in Wing and/or the Wing IDE Quickstart
Guide.

In order to debug Turbogears applications, you will need Wing 3.0 or later, since
earlier versions did not support multi-threaded debugging.

Note

Note that some parts of this document are for Turbogears 1.x only, and
others (as indicated) for Turbogears 2.x only.

Installing Turbogears

The Turbogears website provides complete instructions for installing Turbogears.
The procedure varies slightly by OS. See also the Notes section below.

Configuring Turbogears 1.x to use Wing

This section assumes your Turbogears 1.x project is called wingtest. If not,
substitute your project name in the following instructions.

• Go into the Turbogears instance directory wingtest and run Wing
• Add your instance directory to the project and save it as wingtest.wpr There

is no need to add all of Turbogears to the project; just the instance should
suffice.

• Open start-wingtest.py in Wing and set it as main debug file from the Debug
menu

• Edit start-wingtest.py and add the following before the server is started:

import os
import cherrypy

How-Tos for Web Development

28

http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/intro/tutorial
http://wingware.com/wingide/
http://www.turbogears.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/howtos/quickstart
http://www.turbogears.org/

if os.environ.has_key('WINGDB_ACTIVE'):
 cherrypy.config.update({'autoreload.on': False})

This is needed to prevent creation of a sub-process controlled by the
auto-restarter, which breaks debugging since Wing's debugger will not be
running in the sub-process. If you omit this step, the symptom will be failure to
stop on any breakpoints in your Turbogears application.

• Set a breakpoint on the return line of Root.index() in your controllers.py or
somewhere else you know will be reached on a page load

• Start debugging in Wing from the toolbar or debug icon. If Wing issues a
warning about sys.settrace being called in DecoratorTools select
Ignore this Exception Location in the Exceptions tool in Wing and restart
debugging. In general, sys.settrace will break any Python debugger but Wing
and the code in DecoratorTools both take some steps to attempt to continue to
debug in this case.

• Bring up the Debug I/O tool in Wing and wait until the server output shows that
it has started

• Load http://localhost:8080/ or the page you want to debug in a browser
• Wing should stop on your breakpoint. Be sure to look aroung a bit with the

Stack Data tool and the in Wing Pro the Debug Probe (a command line that
works in the runtime state of your current debug stack frame).

Configuring Turbogears 2.x to use Wing

Turbogears 2.0 changed some things about how Turbogears instances are
packaged and launched, so the configuration is different than with Turbogears 1.x.

This section assumes your Turbogears 2.x project is called wingtest. If not,
substitute your project name in the following instructions.

• Go into the Turbogears instance directory wingtest and run Wing
• Add your instance directory to the project and save it as wingtest.wpr There

is no need to add all of Turbogears to the project; just the instance should
suffice.

• Add also the paster to your project. Then open it and and set it as main debug
file from the Debug menu

• Open up the Python Shell tool and type import sys followed by
sys.executable to verify whether Wing is using the Python that will be running
Turbogears. If not, open Project Properties and set the Python Executable
to the correct one.

• Next right click on paster and select File Properties. Under the Debug tab,
set Run Arguments to serve development.ini (do not include the often-used
--reload argument, as this will interfere with debugging). Then also set
Initial Directory to the full path of wingtest.

How-Tos for Web Development

29

• Set a breakpoint on the return line of RootController.index() in your root.py
or somewhere else you know will be reached on a page load

• Start debugging in Wing from the toolbar or debug icon. If Wing issues a
warning about sys.settrace being called in DecoratorTools select
Ignore this Exception Location in the Exceptions tool in Wing and restart
debugging. In general, sys.settrace will break any Python debugger but Wing
and the code in DecoratorTools both take some steps to attempt to continue to
debug in this case.

• Bring up the Debug I/O tool in Wing and wait until the server output shows that
it has started

• Load http://localhost:8080/ or the page you want to debug in a browser
• Wing should stop on your breakpoint. Be sure to look aroung a bit with the

Stack Data tool and in Wing Pro the Debug Probe (a command line that works
in the runtime state of your current debug stack frame).

Notes for Turbogears 1.x

Turbogears 1.x will install itself into whichever instance of Python runs the installer
script, and only certain versions of Python work with a given version of Turbogears.

If you want to avoid adding Turbogears to an install of Python that you are using
for other purposes, you can install Python to a new location and dedicate that
instance to Turbogears. On Linux, this can be done as follows (assuming you
create /your/path/to/turbogears as the place to install):

• In a Python source dist do:

./configure --prefix=/your/path/to/turbogears
make
make install

• Download tgsetup.py (or from the Turbogears website
• Change to /your/path/to/turbogears
• Run bin/python tgsetup.py --prefix=/your/path/to/turbogears (this works in

Turbogears 1.0.5 but in older versions you may need to edit tgsetup.py to
replace /usr/local/bin with /your/path/to/turbogears/bin.

• Run bin/tgadmin quickstart
• Enter project name wingtest and defaults for the other options

Similar steps should work on Windows and OS X.

How-Tos for Web Development

30

Notes for Turbogears 2.x

Turbogears 2.x uses virtualenv to separate what it installs from your main Python
installation so in most cases you can install Turbogears 2.x using an installation of
Python that you also use for other purposes. If, however, a clean or separate
Python installation is desired, you can install Python to a new location and dedicate
that instance to Turbogears. On Linux, this can be done as follows (assuming you
create /your/path/to/turbogears as the place to install):

• In a Python source dist do:

./configure --prefix=/your/path/to/turbogears
make
make install

• Then install easy_install by running its setup script with the Python at
/your/path/to/turbogears/bin/python.

• Whenever the Turbogears installation instructions call for invoking
easy_install use the one in /your/path/to/turbogears/bin

Similar steps should work on Windows and OS X.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Turbogears home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

2.8. Using Wing IDE with Google App Engine
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for the Google App Engine. Wing provides
auto-completion, call tips, a powerful debugger, and many other features that help
you write, navigate, and understand Python code. Since Google App Engine will
reload your code when you save it to disk, you can achieve a very fast edit/debug
cycle without restarting the debug process.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now. To get started using Wing,
refer to the tutorial in the Help menu in Wing and/or the Wing IDE Quickstart
Guide.

How-Tos for Web Development

31

http://wingware.com/doc/manual
http://www.turbogears.org/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide/
https://cloud.google.com/appengine/docs?csw=1
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/howtos/quickstart

Creating a Project

Before trying to configure a Wing IDE project, first install and set up Google App
Engine and verify that it is working by starting it outside of Wing IDE and testing it
with a web browser. It is also a good idea to install App Engine upgrades at this
time, before doing anything else.

Then create a project in Wing using New Project in the Project menu and
selecting Google App Engine as the project type. Then use Add Directory in the
Project menu to add your source directories to the project. You should also add at
least dev_appserver.py, which is located in the top level of the Google SDK
directory.

Next open up dev_appserver.py in Wing's editor and select Set Current as
Main Debug File in the Debug menu. This tells Wing to use this file as the main
entry point, which is then highlighted in red in the Project tool. If a main debug file
is already defined the Debug menu item will be Clear Main Debug File instead.

Next you need to go into Project Properties and set Debug/Execute > Debug
Child Processes to Always Debug Child Processes. This is needed because
App Engine creates more than one process.

Finally, save your project with Save Project in the Project menu. Store the project
at or near the top level of your source tree.

Configuring the Debugger

Before trying to debug make sure you stop Google App Engine if it is running
already outside of Wing IDE.

You can debug code running under Google App Engine by selecting Start /
Continue from the Debug menu (or using the green run icon in the toolbar). This
will bring up a dialog that contains a Run Arguments field that must be altered to
specify the application to run. For example, to run the guestbook demo that comes
with the SDK, the run arguments would be
"${GOOGLE_APPENGINE_DIR}/demos/guestbook" where
${GOOGLE_APPENGINE_DIR} is replaced by the full pathname of the directory
the SDK is installed in. The quotation marks are needed if the pathname contains a
space. In other apps, this is the directory path to where the app.yaml file is
located. If this path name is incorrect, you will get an error when you start
debugging.

You can also leave the environment reference ${GOOGLE_APPENGINE_DIR} in
the path and define an environment variable under the Environment tab of the
Debug dialog. Or use ${WING:PROJECT_DIR} instead to base the path on the
directory where the project file is located.

For most projects, you'll need to add at least --max_module_instances=1 to the
run arguments, and you may also want to add --threadsafe_override=false.

How-Tos for Web Development

32

These command line arguments disable some of GAE's threading and concurrency
features that can prevent debugging from working properly.

Add a --port=8082 style argument if you wish to change the port number that
Google App Engine is using when run from Wing's debugger. Otherwise the default
of 8080 will be used.

Using a partial path for the application may also be possible if the Initial Directory
is also set in under the Debug tab.

Next, click the OK button to start debugging. Once the debugger is started, the
Debug I/O tool (accessed from the Tools menu) should display output from App
Engine, and this should include a message indicating the hostname and port at
which App Engine is taking requests. Requests may be made with a web browser
using that URL. If Google App Engine asks to check for updates at startup, it will
do so in the Debug I/O tool and you can press "y" or "n" and then Enter as you
would on the command line. Or send the --skip_sdk_update_check argument on
the command line to dev_appserver.py to disable this.

Using the Debugger

After you have configured the debugger, set a break point in any Python code that
is executed by a request and load the page in the browser. For example, to break
when the main page of the guestbook demo is generated, set a breakpoint in the
method Mainpage.get in guestbook.py. When you reach the breakpoint, the
browser will sit and wait while Wing displays a red run marker on code at the
breakpoint and other lines as you step through code using the buttons in Wing
IDE's toolbar.

Check out the Stack Data and Watch tools in the Tools menu to inspect debug
data, or just use the Debug Probe, which is an interactive Python shell that works
in the context of the current debug stack frame. When the debug process is
paused, both the Debug Probe and editor show auto-completion and call tips
based on live runtime state, making it quick and easy to write and try out new code.
You can also see data values by hovering the mouse over symbols in the editor or
Debug Probe and you can press F4 to go to the point of definition.

Continuing with the green run button in the toolbar will complete the page load in
the browser, unless a breakpoint or exception is reached first.

To set up multiple entry points, use Named Entry Points in the Debug menu.
These can contain different commands lines and environment for
dev_appserver.py.

You may edit the Python code for an application while the App Engine is running,
and then reload in your browser to see the result of any changes made. In most
cases, there is no need to restart the debug process after edits are made.

How-Tos for Web Development

33

However, if you try the browser reload too quickly, while App Engine is still
restarting, then it may not respond or breakpoints may be missed.

To learn more about the debugger, try the Tutorial in Wing's Help menu.

Improving Auto-Completion and Goto-Definition

Wing can't parse the sys.path hackery in more recent versions of Google App
Engine so it may fail to find some modules for auto-completion, goto-definition and
other features. To work around this, set a breakpoint in _run_file in
dev_appserver.py and start debugging. Then, after script_name has been set, in
the Debug Probe tool (in Wing Pro only) type the following:

os.pathsep.join(_PATHS.script_paths(script_name))

Copy this to the clipboard and open up the file properties for dev_appserver.py by
right-clicking on the file. Then, in Project Properties under the Environment tab
select Custom for the Python Path, click on the View as Text button and paste in
the extra path.

You will need to redo this if you move the app engine installation, or you can use
${WING:PROJECT_DIR} to convert those paths to base on the location of the
project file.

If you use more than one app within your project with multiple Named Entry Points,
you'll want to set this Python Path into the Named Entry Points's Launch
Configuration environment instead of placing it in Project Properties.

Trouble-shooting

App Engine runs code in a secure environment that prevents access to some
system information, including process ID. This causes some of the sub-processes
created by App Engine to be shown with process id -1. In this case they are not
listed as children of the parent process and you will need to kill both processes,
one at a time, from the toolbar or Debug menu.

Windows users may need to set the TZ environment variable to UTC via the
environment field in Project Properties to work around problems with setting
os.environ['TZ'] while a process is running (this is a Windows runtime bug). One
possible symptom of this is repeated 302 redirects that prevent logging in or other
use of the site.

The Debugger > Exceptions > Report Exceptions preference should be set to
When Printed (the default) when working with Google App Engine or Wing will
report some additional exceptions that are handled internally when running Google
App Engine outside of the debugger.

If you have unchecked the "Show this dialog before each run" checkbox in the
debug dialog shown when launching dev_appserver.py and need to alter the

How-Tos for Web Development

34

command line arguments or other values there, you can access the dialog by right
clicking on dev_appserver.py in the editor or Project and selecting Properties.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Google App Engine home page, which provides links to downloads and

documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.
• Wing IDE Tutorial for a more comprehensive introduction to Wing IDE.

2.9. Using Wing IDE with mod_wsgi
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is running under mod_wsgi and other Python-based
web development technologies. Wing provides auto-completion, call tips, a
powerful debugger, and many other features that help you write, navigate, and
understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Debugging Setup

When debugging Python code running under mod_wsgi, the debug process is
initiated from outside of Wing IDE, and must connect to the IDE. This is done with
wingdbstub according to the instructions in the Debugging Externally Launched
Code section of the manual.

Because of how mod_wsqi sets up the interpreter, be sure to set kEmbedded=1
in your copy of wingdbstub.py and use the debugger API to reset the debugger
and connection as follows:

import wingdbstub
wingdbstub.Ensure()

Then click on the bug icon in lower left of Wing's window and make sure that
Accept Debug Connections is checked. After that, you should be able to reach
breakpoints by loading pages in your browser.

How-Tos for Web Development

35

http://wingware.com/doc/manual
https://cloud.google.com/appengine/docs?csw=1
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/intro/tutorial
http://wingware.com/wingide
http://www.modwsgi.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code

Disabling stdin/stdout Restrictions

In order to debug, may also need to disable the WSGI restrictions on stdin/stdout
with the following mod_wsgi configuration directives:

WSGIRestrictStdin Off
WSGIRestrictStdout Off

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

2.10. Using Wing IDE with mod_python
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is run by the mod_python module for the Apache web
server. Wing provides auto-completion, call tips, a powerful debugger, and many
other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

This document assumes mod_python is installed and Apache is configured to use
it; please see the installation chapter of the mod_python manual for information on
how to install it.

Since Wing's debugger takes control of all threads in a process, only one http
request can be debugged at a time. In the technique described below, a new
debugging session is created for each request and the session is ended when the
request processing ends. If a second request is made while one is being
debugged, it will block until the first request completes. This is true of requests
processed by a single Python module and it is true of requests processed by
multiple Python modules in the same Apache process and its child processes. As a
result, it is recommended that only one person debug mod_python based modules
per Apache instance and production servers should not be debugged.

Quick Start

How-Tos for Web Development

36

http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.modpython.org
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

• Copy wingdbstub.py (from the install directory listed in Wing's About box)
into either the directory the module is in or another directory in the Python path
used by the module.

• Edit wingdbstub.py if needed so the settings match the settings in your
preferences. Typically, nothing needs to be set unless Wing's debug
preferences have been modified. If you do want to alter these settings, see the
Remote Debugging section of the Wing IDE reference manual for more
information.

• Copy wingdebugpw from your User Settings Directory into the directory that
contains the module you plan to debug. This step can be skipped if the module
to be debugged is going to run on the same machine and under the same user
as Wing IDE. The wingdebugpw file must contain exactly one line.

• Insert import wingdbstub at the top of the module imported by the
mod_python core.

• Insert
if wingdbstub.debugger != None: wingdbstub.debugger.StartDebug() at
the top of each function that is called by the mod_python core.

• Allow debug connections to Wing by setting the Accept Debug Connections
preference to true.

• Restart Apache and load a URL to trigger the module's execution.

Example

To debug the hello.py example from the Publisher chapter of the mod_python
tutorial, modify the hello.py file so it contains the following code:

import wingdbstub

def say(req, what="NOTHING"):
 wingdbstub.Ensure()
 return "I am saying %s" % what

And set up the mod_python configuration directives for the directory that hello.py
is in as follows:

AddHandler python-program .py
PythonHandler mod_python.publisher

Then set a breakpoint on the return "I am saying %s" % what line, make sure
Wing is listening for a debug connection, and load http://[server]/[path]/hello.py
in a web browser (substitute appropriate values for [server] and [path]). Wing
should then stop at the breakpoint.

Related Documents

How-Tos for Web Development

37

http://wingware.com/doc/debug/remote-debugging
http://wingware.com/doc/install/user-settings-dir

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Mod_python Manual, which describes how to install, configure, and use

mod_python.

2.11. Using Wing IDE with Paste and Pylons
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Paste and Pylons (which is based on
Paste). Wing provides auto-completion, call tips, a powerful debugger, and many
other features that help you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now. To get started using Wing,
refer to the tutorial in the Help menu in Wing and/or the Wing IDE Quickstart
Guide.

In order to debug Pylons and Paste applications, you will need Wing 3.0 or later,
since earlier versions did not support multi-threaded debugging.

Installing Paste and/or Pylons

The Pylons website and Paste website provide complete instructions for installing
Pylons or Paste

Debugging in Wing IDE

Paste and Pylons can be set to run in an environment that spawns and
automatically relaunches a sub-process for servicing web requests. This is used to
automatically restart the server if for some reason it crashes. However, this does
not work with Wing's debugger since the debugger has no way to cause the
sub-process to be debugged when it is started by the main process.

To avoid this, do not specify the --reload flag for Paste. Place the following in a file
that you add to your project and set as the main debug file:

from paste.script.serve import ServeCommand
ServeCommand("serve").run(["development.ini"])

This may vary somewhat, as necessary for your application.

Debugging Mako Templates

Wing cannot debug Mako templates directly, but it is possible to debug them
through the .py translation (stored in data/templates in the Pylon tree).

Related Documents

Wing IDE provides many other options and tools. For more information:

How-Tos for Web Development

38

http://wingware.com/doc/manual
http://www.modpython.org/
http://wingware.com/wingide/
http://pythonpaste.org/
http://pylonshq.com/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/howtos/quickstart
http://pylonshq.com/
http://pythonpaste.org/

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Pylons home page, which provides links to documentation.
• Paste home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

2.12. Using Wing IDE with Webware
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Webware, an open source web
development framework. Wing provides auto-completion, call tips, a powerful
debugger, and many other features that help you write, navigate, and understand
Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

Wing IDE allows you to graphically debug a Webware application as you interact
with it from your web browser. Breakpoints set in your code from the IDE will be
reached, allowing inspection of your running code's local and global variables with
Wing's various debugging tools. In addition, in Wing IDE Pro, the Debug Probe tab
allows you to interactively execute methods on objects and get values of variables
that are available in the context of the running web app.

There is more than one way to do this, but in this document we focus on an "in
process" method where the Webware server is run from within Wing as opposed to
attaching to a remote process. The technique described below was tested with
Webware 0.9 and Python 2.4 on CentOS Linux. It should work with other
versions and on other OSes as well. Your choice of browser should have no impact
on this technique.

Setting up a Project

Though Wing supports the notion of "Projects" for organizing one's work for this
debugging scenario you can use the Default Project and simply add your source
code directory to it by using Add Directory from the Project menu.

You will also need to specify a Python Path in your Project Properties with
something like following (your actual paths depend on your installation of Webware
and OS):

/usr/local/lib/Webware-0.9/WebKit:/usr/local/lib/Webware-0.9:/home/dev/mycodebase

How-Tos for Web Development

39

http://wingware.com/doc/manual
http://pylonshq.com/
http://pythonpaste.org/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.webwareforpython.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

Note that on Windows, the path separator should be ';' (semicolon) instead. The
Webware MakeAppDir.py script creates a default directory structure and this
example assumes that the source code is nested within this directory.

To debug your Webware app you'll actually be running the DebugAppServer and
not the regular AppServer, so you'll need to bring in the Debug AppServer and a
couple of other files with these steps:

1. Copy the DebugAppServer.py, ThreadedAppServer.py, and Launch.py
from the WebKit directory and put them in the root of the directory that
MakeAppDir.py created.

2. Right click on Launch.py in Wing's editor and select the menu choice
File Properties. Click the Debug tab and enter DebugAppServer.py in the
Run Arguments field. If you're using the default project then leave the initial
directory and build command settings as they are.

3. If you need to modify the version of Python you're running, you can change the
Python Executable on the Environment tab of this debug properties window,
or project-wide from the Project Properties.

4. Optionally, after adding Launch.py to the project, use the Set Main
Debug File item in the Debug menu to cause Wing to always launch this file
when debug is started, regardless of which file is current in the editor.

Starting Debug

To debug, press the green Debug icon in the toolbar. If you did not set a main
debug file in the previous section, you must do this when Launch.py is the current
file.

The file properties dialog will appear. Optionally, deselect Show this
dialog before each run. If you do this you can access the dialog again later by
right clicking on the file in Wing's editor and selecting Properties.

Click OK to start the debug process. The Debug I/O tool will show output from the
Webware process as it starts up. What you will see there depends upon your
Webware application and server settings, but you should see some log messages
scroll by. If there is a path or other kind of problem as the debugging process
proceeds errors will display in the Debug I/O tool or in a pop-up error message in
Wing if you have a missing library or run into another unhandled exception.

Once the process has started up, you will be able to access web pages from your
browser according to your configuration of Webware, just as you would when
running the server outside of Wing.

Now for the fun part -- fire up your browser and go to the home page of your
application. Go into the source file for any Python servlet in Wing and set a
breakpoint somewhere in the code path that you know will be executed when a
given page is requested. Navigate to that page in your browser and you should see

How-Tos for Web Development

40

the Wing program icon in your OS task bar begin to flash. (You'll see that the web
page won't finish loading -- this is because the debugger has control now; the page
will finish loading when you continue running your app by pressing the Debug icon
in the toolbar).

Now you can make use of all of the powerful debugging functionality available in
Wing instead of sprinkling your code with print statements.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

2.13. Debugging Web CGIs with Wing IDE
Wing IDE is an integrated development environment that can be used to write, test,
and debug CGI scripts written in Python. Debugging takes place in the context of
the web server, as scripts are invoked during a browser page load. Wing also
provides auto-completion, call tips, and many other features that help you write,
navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

To set up your CGIs for debugging with Wing IDE, refer to the Debugging
Externally Launched Code section of the manual. Pay careful attention to the
permissions on files, especially if your web server is running as a different user
than the process that is running Wing IDE. You will also need to make sure that the
wingdebugpw file is referenced correctly as described in the instructions.

Tips and Tricks

The rest of this guide provides some tips specific to the task of debugging CGIs:

(1) If Wing is failing to stop on breakpoints, check whether you are loading a web
page that loads multiple parts with separate http requests -- in that case, Wing may
still be busy processing an earlier CGI request when a new one comes in and will
fail to stop on breakpoints because only one debug process is serviced at a time.
This is a limitation in Wing. The work-around is to load specific parts of the page in
the browser by entering the URL you wish to debug.

How-Tos for Web Development

41

http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code

(2) Any content from your CGI script that isn't understood by the web server will be
written to the server's error log. Since this can be annoying to search through, it is
much easier to ensure that all output, including output made in error, is displayed in
your web browser.

To do this, insert the following at the very start of your code, before importing
wingdbstub or calling the debugger API:

print "Content-type: text/html\n\n\n<html>\n"

(In Python 3.x, use print() instead of print)

This will cause all subsequent data to be included in the browser window, even if
your normal Content-type specifier code is not being reached.

(3) Place a catch-all exception handler at the top level of your CGI code and print
exception information to the browser. The following function is useful for inspecting
the state of the CGI environment when an exception occurs (in Python 3.x replace
print with print()):

import sys
import cgi
import traceback
import string

#---
def DisplayError():
 """ Output an error page with traceback, etc """

 print "<H2>An Internal Error Occurred!</H2>"
 print "<I>Runtime Failure Details:</I><P>"

 t, val, tb = sys.exc_info()
 print "<P>Exception = ", t, "
"
 print "Value = ", val, "\n", "<p>"

 print "<I>Traceback:</I><P>"
 tbf = traceback.format_tb(tb)
 print "<pre>"
 for item in tbf:
 outstr = string.replace(item, '<', '<')
 outstr = string.replace(outstr, '>', '>')
 print string.replace(outstr, '\n', '\n'), "
"
 print "</pre>"
 print "<P>"

 cgi.print_environ()
 print "

"

How-Tos for Web Development

42

(4) If you are using wingdbstub.py, you can set kLogFile to receive extra
information from the debug server, in order to debug problems connecting back to
Wing IDE.

(5) If you are unable to see script output that may be relevant to trouble-shooting,
try invoking your CGI script from the command line. The script may fail but you will
be able to see messages from the debug server, when those are enabled.

(6) If all else fails, read your web browser documentation to locate and read its
error log file. On Linux with Apache, this is often in /var/log/httpd/error_log. Any
errors not seen on the browser are appended there.

(7) Once you have the debugger working for one CGI script, you will have to set up
the wingdbstub import in each and every other top-level CGI in the same way.
Because this can be somewhat tedious, and because the import needs to happen
at the start of each file (in the __main__ scope), it makes sense to develop your
code so that all page loads for a site are through a single entry point CGI and
page-specific behavior is obtained via dispatch within that CGI to other modules.
With Python's flexible import and invocation features, this is relatively easy to do.

How-Tos for GUI Development
The following How-Tos provide tips and short cuts for using a number of popular
GUI development frameworks with Wing IDE.

3.1. Using Wing IDE with wxPython
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for the powerful wxPython cross-platform
GUI development toolkit. Wing provides auto-completion, call tips, a powerful
debugger, and many other features that help you write, navigate, and understand
Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

wxPython is a good choice for GUI developers. It currently available for MS
Windows, Linux, Unix, and Mac OS X and provides native look and feel on each of
these platforms.

While Wing IDE does not provide a GUI builder for wxPython, it does provide the
most advanced capabilities available for the Python programming language, and it
can be used with other available GUI builders, as described below.

How-Tos for GUI Development

43

http://wingware.com/wingide
http://www.wxpython.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

Installation and Configuration

Take the following steps to set up and configure Wing IDE for use with wxPython:

• Install Python and Wing. You will need a specific version of Python depending
on the version of wxPython you plan to use. Check the wxPython Getting
Started Wiki when in doubt. See the generic Wing IDE Quickstart Guide for
installation instructions.

• Install wxPython. See the wxPython's website Getting Started Wiki for
installation instructions. Note that you need to install the version of wxPython
to match your Python version, as indicated on the download page.

• Start Wing from the Start menu on Windows, the Finder or OS X, or by typing
wing-personal6.0 on the command line on Linux other Posix systems. Once
Wing has started, you may want to switch to reading this How-To from the
Help menu. This will add links to the functionality of the application.

• Select Show Python Environment from the Source menu and if the Python
version reported there doesn't match the one you're using with wxPython, then
select Project Properties from the Project menu and use the
Python Executable field to select the correct Python version.

• Open the wxPython demo into Wing IDE. This may be located within your
Python installation at site-packages/wx/demo/demo.py, or
Lib/site-packages/wx/demo/demo.py, or
c:\Program Files\wxPython2.6 Docs and Demos\demo, or similar location.
On Linux it may be part of a separate wx examples package, for example on
Ubuntu 6.06 LTS the demo is in the package wx2.6-examples, is installed in
/usr/share/doc/wx2.6-examples/examples/wxPython, and some files in this
directory need to be gunzip``ed before the demo will work.
Once you've opened ``demo.py, select Add Current File from the Project
menu. If you can't find demo.py but have other wxPython code that works, you
can also just use that. However, the rest of this document assumes you're
using demo.py so you will have to adapt the instructions.

• Set demo.py as main entry point for debugging using the Set Main Debug
File item in the Debug menu.

• Save your project to disk. Use a name ending in .wpr.

Test Driving the Debugger

Now you're ready to try out the debugger. To do this:

Start debugging with the Start / Continue item in the Debug menu. Uncheck the
Show this dialog before each run checkbox at the bottom of the dialog that
appears and select OK.

The demo application will start up. If its main window doesn't come to front, bring it
to front from your task bar or window manager. Try out the various demos from the
tree on the left of the wxPython demo app.

How-Tos for GUI Development

44

http://wiki.wxpython.org/index.cgi/Getting_Started
http://wiki.wxpython.org/index.cgi/Getting_Started
http://wingware.com/doc/howtos/quickstart
http://wiki.wxpython.org/index.cgi/Getting_Started
http://www.wxpython.org/download.php

Important: In earlier wxPython 2.6 versions, a change to the demo code breaks all
debuggers by not setting the co_filename attribute on code objects correctly. To fix
this, change the line that reads description = self.modules[modID][2] around line
804 in demo\main.py to instead read description = self.modules[modID][3] --
Wing will not stop at breakpoints until this is done.

Next open ImageBrowser.py (located in the same directory as demo.py) into
Wing IDE. Set a breakpoint on the first line of runTest() by clicking on the dark
grey left margin. Go into the running demo app and select More Dialogs /
ImageBrowser. Wing will stop on your breakpoint.

Select Stack Data from the Tools menu. Look around the stack in the popup at
the top of the window and the locals and globals shown below that for the selected
stack frame. You may see some sluggishness (a few seconds) in displaying values
because of the widespread use of from wx import * in wxPython code, which
imports a huge number of symbols into the globals name space. This depends on
the speed of your machine.

Select Debug Probe (Wing Pro only) from the Tools menu. This is an interactive
command prompt that lets you type expressions or even change values in the
context of the stack frame that is selected on the Debugger window when your
program is paused or stopped at an exception. It is a very powerful debugging tool.

Also take a look at these tools available from the Tools menu:

• I/O -- displays debug process output and processes keyboard input to the
debug process, if any

• Exceptions -- displays exceptions that occur in the debug process
• Modules (Wing Pro only) -- browses data for all modules in sys.modules
• Watch (Wing Pro only) -- watches values selected from other value views (by

right-clicking and selecting one of the Watch items) and allows entering
expressions to evaluate in the current stack frame

Using a GUI Builder

Wing IDE doesn't currently include a GUI builder for wxPython but it can be used
with other tools, such as Boa Constructor, which does provide a GUI builder but
doesn't have the raw power of Wing IDE's debugger and source browser.

To use an external GUI builder, configure Wing to automatically reload files
that are altered by the GUI builder. This is done in Preferences in the Files
Reloading area.

Then you can run Wing IDE and your GUI builder at the same time, working with
both in an almost seamless manner.

A Caveat: Because Python lends itself so well to writing data-driven code, you may
want to reconsider using a GUI builder for some tasks. In many cases, Python's

How-Tos for GUI Development

45

http://boa-constructor.sourceforge.net/

introspection features make it possible to write generic GUI code that you can use
to build user interfaces on the fly based on models of your data and your
application. This can be much more efficient than using a GUI builder to craft
individual menus and dialogs by hand. In general hand-coded GUIs also tend to be
more maintainable.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• wxPython Getting Started page, which contains much additional information

for wxPython programmers.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

3.2. Using Wing IDE with PyQt
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for the PyQt cross-platform GUI
development toolkit. Wing provides auto-completion, call tips, a powerful debugger,
and many other features that help you write, navigate, and understand Python
code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

PyQt is a commercial GUI development environment that runs with native look and
feel on Windows, Linux/Unix, Mac OS, and mobile devices. While Wing IDE does
not include a GUI builder for PyQt, it does provide the most advanced capabilities
available for the Python programming language and it can be used with other
available GUI builders, as described below.

Installation and Configuration

Take the following steps to set up and configure Wing IDE for use with PyQt:

• Install Python, PyQt, and Wing. The Wing IDE Quickstart Guide provides
installation instructions for Wing.

• Start Wing from the Start menu on Windows, the Finder on OS X, or by typing
wing-personal6.0 on the command line on Linux other Posix systems. Once
Wing has started, you may want to switch to reading this How-To from the
Help menu. This will add links to the functionality of the application.

How-Tos for GUI Development

46

http://wingware.com/doc/manual
http://wiki.wxpython.org/index.cgi/Getting_Started
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.riverbankcomputing.co.uk/software/pyqt/
http://wingware.com/
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/howtos/quickstart

• Select Show Python Environment from the Source menu and if the Python
version reported there doesn't match the one you're using with PyQt, then
select Project Properties from the Project menu and use the
Python Executable field to select the correct Python version.

• Open examples/demos/qtdemo/qtdemo.py into Wing IDE (located within
your Python installation) and select Add Current File from the Project menu.

• Set qtdemo.py as main entry point for debugging with Set Main Debug File in
the Debug menu.

• Save your project to disk. Use a name ending in .wpr.

Test Driving the Debugger

Now you're ready to try out the debugger. To do this:

• Start debugging with the Start / Continue item in the Debug menu. Uncheck
the Show this dialog before each run checkbox at the bottom of the dialog
that appears and select OK. You can visit this dialog again later by right
clicking on qtdemo.py in the Project view and selecting File Properties or by
right clicking on the editor.

• The demo application will start up. If its main window doesn't come to front,
bring it to front from your task bar or window manager.

• Next open menumanager.py from the examples/demos/qtdemo directory
and set a breakpoint on the first line of the method itemSelection. Once set,
this breakpoint should be reached whenever you click on a button in the
qtdemo application.

• Use the Stack Data tool in the Tools menu to look around the stack and the
locals and globals for the selected stack frame.

• Select Debug Probe (Wing Pro only) from the Tools menu. This is an
interactive command prompt that lets you type expressions or even change
values in the context of the stack frame that is selected on the Debugger
window when your program is paused or stopped at an exception. It is a very
powerful debugging tool and also useful for writing new code in the context of
the live runtime environment.

• Notice also that when the debugger is active, typing in code that is on the
stack (such as in itemSelected) shows auto-completion in the editor and
calltips and documentation in the Source Assistant tool that is sourced from
the live runtime state of your application.

See the Wing IDE Tutorial and Quick start for more information.

Using a GUI Builder

Wing IDE doesn't currently include a GUI builder for PyQt but it can be used with
an external GUI builder. Wing will automatically reload files that are written by the
GUI builder, making for a fairly seamless integration.

How-Tos for GUI Development

47

http://wingware.com/doc/intro/tutorial
http://wingware.com/doc/howtos/quickstart

A Caveat: Because Python lends itself so well to writing data-driven code, you may
want to reconsider using a GUI builder for some tasks. In many cases, Python's
introspection features make it possible to write generic GUI code that you can use
to build user interfaces on the fly based on models of your data and your
application. This can be much more efficient than using a GUI builder to craft
individual menus and dialogs by hand. In general model-driven GUIs also tend to
be more maintainable, and the Qt widget set was designed specifically to make
hand-coding easy.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• PyQt home page, which provides links to documentation and downloads.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

3.3. Using Wing IDE with GTK and PyGObject
Wing IDE is an integrated development environment that can be used to edit, test,
and debug Python code that is written for GTK using PyGObject. Wing provides
auto-completion, call tips, a powerful debugger, and many other features that help
you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Auto-Completion

PyGObject uses lazy (on-demand) loading of functionality to speed up startup of
applications that are based on it. This prevents Wing's analysis engine from
inspecting PyGObject-wrapped APIs and thus the IDE fails to offer
auto-completion.

To work around this, use Fakegir, which is a tool to build a fake Python package of
PyGObject modules that can be added to the
Source Analysis > Advanced > Interface File Path in preferences. The parent
directory of the generated gi package should be added; if the defaults are used,
the directory to add is ~/.cache/fakegir.

Fakegir's README.md provides usage details.

How-Tos for GUI Development

48

http://wingware.com/doc/manual
http://www.riverbankcomputing.co.uk/software/pyqt/
http://wingware.com/doc/howtos/quickstart
http://wingware.com
http://www.gtk.org/
http://live.gnome.org/PyGObject
http://wingware.com
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
https://github.com/strycore/fakegir

Don't add the Fakedir produced package to the Python Path defined in Wing's
Project Properties because code will not work if the fake module is actually on
sys.path when importing any PyGObject-provided modules.

Once this is done Wing should offer auto-completion for all PyGObject-provided
modules and should be able to execute and debug your code without disruption.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

3.4. Using Wing IDE with PyGTK
Wing IDE is an integrated development environment that can be used to edit, test,
and debug Python code that is written for PyGTK and GTK+, a mature open
source GUI development toolkit. Wing provides auto-completion, call tips, a
powerful debugger, and many other features that help you write, navigate, and
understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

PyGTK is currently available for Linux/Unix, Windows, and Mac OS X (requires
X11 Server). Like PyQt and unlike wxPython, PyGTK runs on the same
(GTK-provided) widget implementations on all platforms. Themes can be used to
approximate the look and behavior of widgets on the native OS. It is also possible
to display native dialogs like the Windows file and print dialogs along side GTK
windows. While PyGTK does not offer perfect native look and feel, its provides
excellent write-once-works-anywhere capability even in very complex GUIs. Wing
IDE is itself written using PyGTK.

Other advantages of PyGTK include: (1) high quality anti-aliased text rendering, (2)
powerful signal-based architecture that, among other things, allows subclassing C
classes in Python, (3) multi-font text widget with embeddable sub-widgets, (4)
model-view architecture for list and tree widgets, and (5) a rich collection of widgets
and stock icons.

How-Tos for GUI Development

49

http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.pygtk.org/
http://www.gtk.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/howtos/pyqt
http://wingware.com/doc/howtos/wxpython

While Wing IDE does not currently provide a GUI builder for PyGTK, it does
provide the most advanced capabilities available for the Python programming
language and it can be used with other available GUI builders, as described below.

Installation and Configuration

Take the following steps to set up and configure Wing IDE for use with PyGTK:

• Install Python and Wing. See the generic Wing IDE Quickstart Guide for
installation instructions.

• Install GTK and PyGTK. If you are on Linux, you may already have one or both
installed, or you may be able to install them using your distribution's package
manager. Otherwise, check out the gtk website and pygtk website.

• Start Wing from the Start menu on Windows, the Finder or OS X, or by typing
wing-personal6.0 on the command line on Linux other Posix systems. Once
Wing has started, you may want to switch to reading this How-To from the
Help menu. This will add links to the functionality of the application.

• Select Show Python Environment from the Source menu and if the Python
version reported there doesn't match the one you're using with PyGTK, then
select Project Properties from the Project menu and use the
Python Executable field to select the correct Python version.

• Add some files to your project, and set the main entry point with Set
Main Debug File in the Debug menu.

• Save your project to disk. Use a name ending in .wpr.
• You should now be able to debug your PyGTK application from within Wing. If

you see ImportErrors on the PyGTK modules, you will need to add
Python Path in the Debug tab of Project Properties, accessed from the
Project menu.

Auto-completion and Source Assistant

To obtain auto-completion options and call signature information in Wing IDE Pro's
Source Assistant, you may need to run a script that converts from PyGTK's defs
files into Python interface files that Wing's source analyser can read. This is only
necessary if you are working with PyGTK significantly different than version 2.7.4,
because Wing ships with pre-built interface information for PyGTK 2.7.4. If you do
need to build interface files, do so as follows:

• Download the pygtk_to_pi.py script and the PyGTK sources for your version of
PyGTK if you don't already have them.

• Run as described within the script to produce a *.pi file for each *.so or *.pyd
file in the PyGTK sources.

• Copy these *.pi files into the installed copy of PyGTK, so they sit next to the
compiled *.so or *.pyd extension module file that they describe.

How-Tos for GUI Development

50

http://wingware.com/doc/howtos/quickstart
http://www.gtk.org/
http://www.pygtk.org/
http://wingware.com/pub/wingide/contrib/pygtk_to_pi.py
http://pygtk.org/downloads.html

• Wing should now provide auto-completion and (in Wing IDE Pro) Source
Assistant information when you import gtk and type gtk. in the editor.

With newer PyGTK versions, it may be necessary to make modifications to the
pygtk_to_pi.py script to track changes in the nature of the source base.

Using a GUI Builder

Wing IDE doesn't currently include a GUI builder for PyGTK but it can be used with
other tools, such as glade.

To use an external GUI builder, configure Wing to automatically reload files
that are altered by the GUI builder. This is done in Preferences in the Files /
Reloading area.

Then you can run Wing IDE and your GUI builder at the same time, working with
both in an almost seamless manner.

A Caveat: Because Python lends itself so well to writing data-driven code, you may
want to reconsider using a GUI builder for some tasks. In many cases, Python's
introspection features make it possible to write generic GUI code that you can use
to build user interfaces on the fly based on models of your data and your
application. This can be much more efficient than using a GUI builder to craft
individual menus and dialogs by hand. In general hand-coded GUIs also tend to be
more maintainable.

Details and Notes

• Building GTK from sources can be a challenge. Wingware has developed
some build support scripts which we can provide on request. We also have
patches that allow GTK to be relocated after building on Linux/Unix.

• Native look and feel on Windows is provided by the gtk-wimp theme. If you
plan to deploy on Windows, you may wish to contact us to obtain our latest
performance patches for GTK on Windows.

Unfortunately not all of our patches have been merged into the current GTK
sources, although we have contributed patches in all cases so they can be
retrieved from the source forge bug tracker as well.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

How-Tos for GUI Development

51

http://glade.gnome.org/
http://gtk-wimp.sourceforge.net/
http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart

3.5. Using Wing IDE with matplotlib
Wing IDE is an integrated development environment that can be used to speed up
the process of writing and debugging Python code that is written for matplotlib, a
powerful 2D plotting library. Wing provides auto-completion, call tips, a powerful
debugger, and many other features that help you write, navigate, and understand
Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

Note: This document contains only matplotlib specific tips; please refer to the
tutorial in the Help menu in Wing and/or the Wing IDE Quickstart Guide.

Working in the Python Shell

Users of matplotlib often work interactively in the Python command line shell. For
example, two plots could be shown in succession as follows:

from pylab import plot,show,close
x = range(10)
plot(x)
show()
y = [2, 8, 3, 9, 4]
plot(y)
close()

In some environments, the show() call above will block until the plot window is
closed. By default Wing IDE modifies the matplotlib event loop in such a way that
the show() call will not block when entered in the integrated Python Shell, and the
plot window will be updated continuously as additional commands are typed. In fact
show() is not needed at all here since Wing automatically shows and updates plots
once plot() is called (but calling it is not a problem, and often will happen if you
evaluate code from a source file in the Python Shell). This allows for easier
interactive testing of new code and plots.

Code from the editor can be executed in the Python Shell using the Evaluate
File in Python Shell item in the Source menu or with the Evaluate
Selection in Python Shell item in the editor context menu (right click). By default
the Python Shell restarts before evaluating a whole file; this can be disabled in the
Python Shell's Options menu.

This special event loop support has been implemented for the TkAgg, GTKAgg,
WXAgg (for wxPython 2.5+), Qt4Agg, and MacOS backends. It will not work with
other backends.

How-Tos for GUI Development

52

http://wingware.com/wingide/
http://matplotlib.sourceforge.net/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

Working in the Debugger

When executing code that includes show() in the debugger, Wing will block within
the show() call just as Python would outside of the debugger if launched on the
same file. This is by design, since the debugger seeks to replicate Python run
non-interactively.

To work interactively with matplotlib code launched in the debugger, you can set a
breakpoint on show() in the code and then work in the Debug Probe. Wing adds
an item Evaluate Selection in Debug Probe to the editor context menu (right
click) when the debugger is active.

Trouble-shooting

If show() blocks when typed in the Python Shell or Debug Probe, if plots fail to
update, or if you run into other event loop problems working with matplotlib you
can:

(1) Try the following as a way to switch to another backend before issuing any
other commands:

import matplotlib
matplotlib.use('TkAgg')

(2) Try disabling the matplotlib support entirely in Project Properties under the
Extensions tab and then restart the Python Shell from its Options menu and
restart your debug process, if any. However, this prevents interactive use of
matplotlib in the Python Shell and Debug Probe.

Please email support@wingware.com if you cannot resolve problems without
disabling Wing's matplotlib support.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• The matplotlib home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

How-Tos for Modeling, Rendering, and
Compositing Systems
The following How-Tos provide tips and short cuts for using a number of modeling,
rendering, and compositing systems with Wing IDE.

How-Tos for Modeling, Rendering, and Compositing Systems

53

mailto:support@wingware.com
http://wingware.com/doc/manual
http://matplotlib.sourceforge.net/
http://wingware.com/doc/howtos/quickstart

4.1. Using Wing IDE with Blender
Wing IDE is an integrated development environment that can be used to develop,
test, and debug Python code written for Blender, an open source 3D content
creation system. Wing provides auto-completion, call tips, a powerful debugger,
and many other features that help you write, navigate, and understand Python
code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Introduction

Blender's loads Python scripts in a way that makes them difficult to debug in a
Python debugger. The following stub file can be used to work around these
problems:

import os
import sys

MODIFY THESE:
winghome = r'c:\Program Files\Wing IDE 2.1'
scriptfile = r'c:\src\test\blender.py'

os.environ['WINGHOME'] = winghome
if winghome not in sys.path:
 sys.path.append(winghome)
#os.environ['WINGDB_LOGFILE'] = r'c:\src\blender-debug.log'
import wingdbstub
wingdbstub.debugger.StartDebug()

def runfile(filename):
 execfile(filename)
runfile(scriptfile)

To use this script:

1. Modify winghome & scriptfile definitions where indicated to the wing
installation directory and the script you want to debug, respectively. When in
doubt, the location to use for winghome is given as the Install Directory in
your Wing IDE About box (accessed from Help menu).

2. Run blender
3. Click on upper left icon and select text editor
4. Click on icon to right of "File" to display text editor pane
5. Select File -> Open from the bottom menu bar and select this file to open

How-Tos for Modeling, Rendering, and Compositing Systems

54

http://wingware.com/wingide/
http://www.blender.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

Once the above is done you can debug your script by executing this blenderstub
file in blender. This is done using File -> Run Python Script from the bottom menu
or by the Alt-P key, though Alt-P seems to be sensitive to how the focus is set.

Note that you will need to turn on listening for externally initiated debug
connections in Wing, which is most easily done by clicking on the bug icon in the
lower left of the main window and selecting Accept Debug Connections in the
popup menu that appears.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Blender home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

4.2. Using Wing IDE with Autodesk Maya
Wing IDE is an integrated development environment that can be used to develop,
test, and debug Python code written for Autodesk Maya, a commercial 3D
modeling application. Wing provides auto-completion, call tips, a powerful
debugger, and many other features that help you write, navigate, and understand
Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Debugging Setup

When debugging Python code running under Maya, the debug process is initiated
from outside of Wing IDE, and must connect to the IDE. This is done with
wingdbstub according to the instructions in the Debugging Externally Launched
Code section of the manual.

Because of how Maya sets up the interpreter, be sure to set kEmbedded=1 in
your copy of wingdbstub.py and use the debugger API to ensure the debugger is
connected to the IDE before any other code executes as follows:

import wingdbstub
wingdbstub.Ensure()

How-Tos for Modeling, Rendering, and Compositing Systems

55

http://wingware.com/doc/manual
http://www.blender.org/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://usa.autodesk.com/maya/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code

Then click on the bug icon in lower left of Wing's window and make sure that
Accept Debug Connections is checked. After that, you should be able to reach
breakpoints by causing the scripts to be invoked from Maya.

In some cases you may need to edit wingdbstub.py to set WINGHOME to point to
the directory where Wing IDE is installed. This is usually set up automatically by
Wing's installer, but won't be if you are using the .zip installation of Wing. Note that
if you edit wingdbstub.py after Maya has already imported it then you will need to
restart Maya to get it to import the modified wingdbstub.

To use the mayapy executable found in the Maya application directory to run
Wing's Python Shell tool and to debug standalone Python scripts, enter the full
path of the mayapy file (mayapy.exe on Windows) in the
Python Executable field of the Project Properties dialog.

Better Static Auto-completion

Maya's Python support scripts do not come with source code, but rather only with
pyc files. Because Wing cannot statically analyze those files, it will fail to offer
auto-completion for them unless .pi files are used. A set of .pi files generated by
the PyMEL project can be found in Maya 2011 or in the PyMEL distribution.

• Maya 2011 ships with .pi files in the devkit/pymel/extras/completion/pi
subdirectory of the Maya 2011 install directory.

• For other Maya versions, .pi files from the PyMEL distribution at
http://code.google.com/p/pymel/ may be used. PyMEL does not need to be
installed or used to make use of the .pi files; it's enough to simply unpack the
source distribution. The pi directory within the PyMEL 1.0.2 distribution is
extras/completion/pi

Add the pi directory to the list of interface file directories that Wing uses by adding
it to the Interface File Path preference in the Source Analysis -> Advanced
preference page. After adding the directory to the path, Wing will offer
auto-completion if you import xxx and then type xxx.

Additional Information

Some additional information about using Wing IDE with Maya can be found in For
Python: Maya 'Script Editor' Style IDE. This includes extension scripts for more
closely integrating Wing Pro and Maya and some additional details. For example,
sending Python and MEL code to Maya from Wing is explained here

See also the section Using Wing IDE with Maya in Autodesk Maya Online Help:
Tips and tricks for scripters new to Python.

Related Documents

Wing IDE provides many other options and tools. For more information:

How-Tos for Modeling, Rendering, and Compositing Systems

56

http://code.google.com/p/pymel/
http://code.google.com/p/pymel/
http://mayamel.tiddlyspot.com/#[[For%20Python%3A%20Maya%20%27Script%20Editor%27%20style%20IDE]]%20[[How%20can%20I%20have%20Wing%20send%20Python%20or%20mel%20code%20to%20Maya%3F]]%20[[Remote%20Python%20debugging%20in%20Wing]]%20Welcome%20Blog
http://mayamel.tiddlyspot.com/#[[For%20Python%3A%20Maya%20%27Script%20Editor%27%20style%20IDE]]%20[[How%20can%20I%20have%20Wing%20send%20Python%20or%20mel%20code%20to%20Maya%3F]]%20[[Remote%20Python%20debugging%20in%20Wing]]%20Welcome%20Blog
http://mayamel.tiddlyspot.com/#[[How%20can%20I%20have%20Wing%20send%20Python%20or%20mel%20code%20to%20Maya%3F]]
http://download.autodesk.com/us/maya/2010help/index.html?url=WS73099cc142f48755f2fc9df120970276f7-2158.htm,topicNumber=d0e183276
http://download.autodesk.com/us/maya/2010help/index.html?url=WS73099cc142f48755f2fc9df120970276f7-2158.htm,topicNumber=d0e183276

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

4.3. Using Wing IDE with NUKE and NUKEX
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for The Foundry's NUKE and NUKEX digital
compositing tool. Wing provides auto-completion, call tips, a powerful debugger,
and many other features that help you write, navigate, and understand Python
code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Project Configuration

First, launch Wing IDE and create a new project from the Project menu and save it
to disk. Files can be added to the project with the Project menu. This is not a
requirement for working with NUKE but recommended so that Wing IDE's source
analysis, search, and revision control features know which files are part of the
project.

Next, make sure Wing IDE is using NUKE's Python installation, or a Python that
matches NUKE's Python version.

Configuring for Licensed NUKE/NUKEX

If you have NUKE or NUKEX licensed and are not using the Personal Learning
Edition, then you can create a script to run NUKE's Python in terminal mode and
use that as the Python Executable in Wing's Project Properties. For example on
OS X create a script like this:

#!/bin/sh
/Applications/Nuke6.3v8/Nuke6.3v8.app/Nuke6.3v8 -t -i "$@"

Then perform chmod +x on this script to make it executable. On Windows, you
can create a batch file like this:

@echo off
"c:\Program Files\Nuke7.0v9\Nuke7.0.exe" -t -i %*

Next, you will make the following changes in Project Properties, from the Project
menu in Wing:

How-Tos for Modeling, Rendering, and Compositing Systems

57

http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart
http://wingware.com/
http://www.thefoundry.co.uk/products/nuke/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

• Set Python Executable to point to this script
• Change Python Options under the Debug tab to Custom with a blank entry

area (no options instead of -u)

Apply these changes and Wing will use NUKE's Python in its Python Shell (after
restarting from its Options menu), for debugging, and for source analysis.

Configuring for Personal Learning Edition of NUKE

The above will not work in the Personal Learning Edition of NUKE because it does
not support terminal mode. In that case, install a Python version that matches
NUKE's Python and use that instead. You can determine the correct version to use
by by looking at sys.version in NUKE's Script Editor. Then point Wing to that
Python with Python Executable in Project Properties. Using a matching Python
version is a good idea to avoid confusion caused by differences in Python
versions, but is not critical for Wing to function. However, Wing must be able to find
some Python version or many of its features will be disabled.

Additional Project Configuration

When using Personal Learning Edition, and possibly in other cases, some
additional configuration is needed to obtain auto-completion on the NUKE API also
when the debugger is not connected or not paused. The API is located inside the
NUKE installation, in the plugins directory. The plugins directory (parent directory
of the nuke package directory) should be added to the Python Path configured in
Wing's Project Properties (as accessed from the Project menu). On OS X this
directory is within the NUKE application bundle, for example
/Applications/Nuke6.3v8/Nuke6.3v8.app/Contents/MacOS/plugins.

Replacing the NUKE Script Editor with Wing IDE Pro

Wing IDE Pro can be used as a full-featured Python IDE to replace NUKE's Script
Editor component. This is done by downloading and configuring
NukeExternalControl.

First set up and test the client/server connection as described in the documentation
for NukeExternalControl. Once this works, create a Python source file that contains
the necessary client-side setup code and save this to disk.

Next, set a breakpoint in the code after the NUKE connection has been made, by
clicking on the breakpoint margin on the left in Wing's editor or by clicking on the
line and using Add Breakpoint in the Debug menu or the breakpoint icon in the
toolbar.

Then debug the file in Wing IDE Pro by pressing the green run icon in the toolbar
or with Start/Continue in the Debug menu. After reaching the breakpoint, use the
Debug Probe in Wing to work interactively in that context.

How-Tos for Modeling, Rendering, and Compositing Systems

58

https://github.com/Nvizible/NukeExternalControl

You can also work on a source file in Wing's editor and evaluate selections within
the file in the Debug Probe, by right-clicking on the editor.

Both the Debug Probe and Wing's editor should offer auto-completion on the
NUKE API, at least while the debugger is active and paused in code that is being
edited. The Source Assistant in Wing IDE Pro provides additional information for
symbols in the auto-completer, editor, and other tools in Wing.

This technique will not work in Wing IDE Personal because it lacks the Debug
Probe feature. However, debugging is still possible using the alternate method
described in the next section.

Debugging Python Running Under NUKE

Another way to work with Wing IDE and NUKE is to connect Wing IDE directly to
the Python instance running under NUKE. In order to do this, you need to import a
special module in your code, as follows:

import wingdbstub

You will need to copy wingdbstub.py out of the install directory listed in Wing's
About box and may need to set WINGHOME inside wingdbstub.py to the
location where Wing IDE is installed if this value is not already set by the Wing IDE
installer. On OS X, WINGHOME should be set to the full path of Wing's .app
folder.

Before debugging will work within NUKE, you must also set the kEmbedded flag
inside wingdbstub.py to 1.

Next click on the bug icon in the lower left of Wing IDE's main window and make
sure that Accept Debug Connections is checked.

Then execute the code that imports the debugger. For example, right click on one
of NUKE's tool tabs and select Script Editor. Then in the bottom panel of the
Script Editor enter import wingstub and press the Run button in NUKE's Script
Editor tool area. You should see the bug icon in the lower left of Wing IDE's
window turn green, indicating that the debugger is connected.

If the import fails to find the module, you may need to add to the Python Path as
follows:

import sys
sys.path.append("/path/to/wingdbstub")
import wingdbstub

After that, breakpoints set in Python modules should be reached and Wing IDE's
debugger can be used to inspect, step through code, and try out new code in the
live runtime. Breakpoints set in the script itself won't be hit, though, due to how

How-Tos for Modeling, Rendering, and Compositing Systems

59

Nuke loads the script so code to be debugged should be put in modules that are
imported.

For example, place the following code in a module named testnuke.py that is
located in the same directory as wingdbstub.py or anywhere on the sys.path
used by NUKE:

def wingtest():
 import nuke
 nuke.createNode('Blur')

Then set a breakpoint on the line import nuke by clicking in the breakpoint margin
to the left, in Wing's editor.

Next enter the following and press the Run button in NUKE's Script Editor (just as
you did when importing wingdbstub above):

import testnuke
testnuke.wingtest()

As soon as the second line is executed, Wing should reach the breakpoint. Then
try looking around with the Stack Data and Debug Probe (in Wing Pro only).

Debugger Configuration Detail

If the debugger import is placed into a script file, you may also want to call Ensure
on the debugger, which will make sure that the debugger is active and connected:

import wingdbstub
wingdbstub.Ensure()

This way it will work even after the Stop icon has been pressed in Wing, or if Wing
is restarted or the debugger connection is lost for any other reason.

For additional details on configuring the debugger see Debugging Externally
Launched Code.

Limitations and Notes

When Wing's debugger is connected directly to NUKE and at a breakpoint or
exception, NUKE's GUI will become unresponsive because NUKE scripts are run
in a way that prevents the main GUI loop from continuing while the script is paused
by the debugger. To regain access to the GUI, continue the paused script or
disconnect from the debug process with the Stop icon in Wing's toolbar.

NUKE will also not update its UI to reflect changes made when stepping through a
script or otherwise executing code line by line. For example, typing import
nuke; nuke.createNode('Blur') in the Debug Probe will cause creation of a node
but NUKE's GUI will not update until the script is continued.

How-Tos for Modeling, Rendering, and Compositing Systems

60

http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code

When the NUKE debug process is connected to the IDE but not paused, setting a
breakpoint in Wing will display the breakpoint as a red line rather than a red dot
during the time where it has not yet been confirmed by the debugger. This can be
any length of time, if NUKE is not executing any Python code. Once Python code is
executed, the breakpoint should be confirmed and will be reached. This delay in
confirming the breakpoint does not occur if the breakpoint is set while the debug
process is already paused, or before the debug connection is made.

These problems should only occur when Wing IDE's debugger is attached directly
to NUKE, and can be avoided by working through NukeExternalControl instead,
as described in the first part of this document.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• NUKE/NUKEX home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

4.4. Using Wing IDE with Source Filmmaker
Wing IDE is an integrated development environment that can be used to develop,
test, and debug Python code written for Source Filmmaker (SFM), a movie-making
tool built by Valve using the Source game engine. Wing provides auto-completion,
call tips, a powerful debugger, and many other features that help you write,
navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Debugging Setup

Wing can debug Python code that's saved in a file, but not code entered in the
Script Editor window. As of version 0.9.8.5 (released May 2014), this includes
scripts run from the main menu. In all versions, code in imported modules may be
debugged.

When debugging Python code running under SFM, the debug process is initiated
from outside of Wing IDE, and must connect to the IDE. This is done with
wingdbstub, as described in in the Debugging Externally Launched Code section
of the manual. Because of how SFM sets up the interpreter, you must set
kEmbedded=1 in your copy of wingdbstub.py.

How-Tos for Modeling, Rendering, and Compositing Systems

61

http://wingware.com/doc/manual
http://www.thefoundry.co.uk/products/nuke/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.sourcefilmmaker.com/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code

As of May 2014, SFM comes with wingdbstub.py in the site-packages directory in
its Python installation. If an older version of SFM is being used or if Wing IDE is
installed into a nonstandard directory, copy wingdbstub.py from your Wing IDE
install directory to the site-packages directory. The default location of the
site-packages directory is:

<STEAM>\steamapps\common\SourceFilmmaker\game\sdktools\python\2.7\win32\Lib\site-packages

Before debugging, click on the bug icon in lower left of Wing's window and make
sure that Accept Debug Connections is checked. After that, you should be able
to reach breakpoints by causing the scripts to be invoked from SFM.

To start debugging and ensure there's a connection from the SFM script being
debugged to Wing, execute the following before any other code executes:

import wingdbstub
wingdbstub.Ensure()

To use the python executable found in the SFM application directory to run Wing's
Python Shell tool and to debug standalone Python scripts, enter the full path of the
python.exe file in the Python Executable field of the Project Properties dialog.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.
• Wing IDE Tutorial which provides a tour of Wing IDE's feature set.

How-Tos for Other Libraries
The following How-Tos provide tips and short cuts for using a number of other
popular development frameworks with Wing IDE.

5.1. Using Wing IDE with virtualenv
Wing IDE is an integrated development environment that that speeds up the
process of writing, testing, and debugging Python code. Wing IDE supports
virtualenv, providing auto-completion, call tips, goto-definition, find uses,
refactoring, a powerful debugger, unit testing, and many other features that help
you navigate, understand, and write Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

How-Tos for Other Libraries

62

http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/intro/tutorial
http://wingware.com/
http://www.virtualenv.org
http://wingware.com/products
http://wingware.com/wingide/trial

Project Configuration

To use virtualenv with Wing, simply set the Python Executable in Wing's Project
Properties to the python executable provided by virtualenv. Wing uses this to
determine the environment to use for source analysis and how to execute, test,
and debug your code.

The easiest way to determine the correct value to set is to launch your virtualenv
Python outside of Wing IDE and run import sys; print(sys.executable). Then use
the full path that prints as the Python Execuable in Wing.

An alternative approach is to activate the virtualenv and then start Wing from the
command line so that it inherits the virtual environment. However, setting
Python Executable is preferable so that Wing switches virtual environments when
you switch projects without restarting the IDE.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Wing IDE Tutorial
• Wing IDE Quickstart Guide

5.2. Using Wing IDE with Raspberry Pi

Note

"Within a couple of minutes I could fence in and eliminate an error with
the handling of a GPRS modem attached to the Raspberry Pi that
before I was trying to hunt down for hours." -- Robert Rottermann,
redCOR AG

Wing IDE is an integrated development environment that can be used to develop
and debug Python code running on the Raspberry Pi. Wing provides
auto-completion, call tips, a powerful debugger, and many other features that help
you write, navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

How-Tos for Other Libraries

63

http://wingware.com/doc/manual
http://wingware.com/doc/intro/tutorial
http://wingware.com/doc/howtos/quickstart
http://redcor.ch/
http://wingware.com/wingide/
http://raspberrypi.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

Introduction

Wing does not run on the Raspberry Pi , but you can set up Wing IDE on a
computer connected to the Raspberry Pi to work on and debug Python code
remotely.

If you have Wing IDE Pro then you can set up development on the Raspberry Pi
very quickly using Wing Pro's remote development features, as described in the
following section.

If you have Wing IDE Personal you will need to set up remote file sharing and
debugging manually, as described in
Manual Configuration for Wing IDE Personal below.

In either case you will first need a TCP/IP network connection between the
machine where Wing IDE is running and the Raspberry Pi. The easiest way to
connect the Raspberry Pi to your network is with ethernet, or see the instructions at
the end of this document for configuring a wifi connection.

Remote Development with Wing IDE Pro

To use Wing IDE Pro's remote development capabilities with the Raspberry Pi,
take the following steps:

• If you do not already have Wing installed, download a free trial on Windows,
Linux, or OS X.

• Make sure you can connect to the Raspberry Pi from the machine where Wing
IDE will be running, using ssh (or PuTTY on Windows) without entering a
password. You need to set up the SSH keys on each machine, and load them
into your key server via ssh-add (or in Pageant on Windows).

• Start up Wing and use New Project from the Project menu to create a project.
Select project type Connect to Remote Host (via SSH). Fill in the fields as
follows:

• Identifier -- Set this to rasp or some other string to identify the Raspberry
Pi

• Host Name -- Set this to the string you use to SSH into the Raspberry Pi.
In most cases you'll need both a username and IP address, such as
pi@192.168.0.2.

• WINGHOME -- Set this to the full path of the location where you would like
Wing to install its remote agent on the Raspberry Pi, for example
/home/pi/winghome.

Note that you can edit your configuration later, or add remote hosts to any
project, from the Remote Hosts item in the Project menu.

• Next click OK to create that remote host. Wing will attempt to contact the
Raspberry Pi and fail. Press the Install Remote Agent button to install the

How-Tos for Other Libraries

64

http://wingware.com/wingide/trial
http://www.putty.org/

remote agent in the directory you specified as WINGHOME above. Wing will
run the installation and try again to establish a connection to the remote agent
running on the Raspberry Pi. If this fails, details of the SSH command's output
will be given in the resulting dialog.

• Once you have the remote agent working, go into Project Properties and set
Python Executable to Remote and choose the remote host definition you just
created above. Then click OK to save the project configuration. If you have not
already done so, save the project to disk using a name ending in .wpr, for
example raspremote.wpr.

• Next right click on the Project tool in Wing and select Add Existing
Directory. In the resultin dialog, press Browse to choice directories on the
Raspberry Pi.

Once this is done, you can open files from the Project tool, with Open
From Project and in other ways, and work with them as if they were on your local
machine. That includes debugging, running unit tests, issuing revision control
commands, searching, running a Python Shell or OS Commands remotely, and
using other features like goto-definition, find uses, and refactoring.

Manual Configuration for Wing IDE Personal

This section describes how to set up remote debugging on a Raspberry Pi
manually, for Wing IDE Personal. These instructions also work with Wing IDE Pro
but it is much easier to use Wing IDE Pro's remote development features (see
instructions above).

To do this, you will first need (1) a network connection between the Raspberry Pi
and the computer where Wing IDE will be running, and (2) a way to share files from
the machine running Wing IDE and the Raspberry Pi. For file sharing, use Samba,
or simply transfer a copy of your files to the Raspberry Pi using scp or rsync.

Installing and Configuring the Debugger

Once you have a network connection and some sort of file sharing set up, the next
step is to install and configure Wing IDE's debugger. This is done as follows:

• If you do not already have Wing installed, download a free trial on Windows,
Linux, or OS X.

• Download the Raspberry Pi debugger package to your Raspberry Pi and
unpack it with tar xzf wing-debugger-raspbian-6.0.2-1.tgz. This creates a
directory named wing-debugger-raspbian-6.0.2-1.

• Launch Wing IDE and make sure that Accept Debug Connections is
checked when you click on the bug icon in the lower left of Wing's main
window. Hovering the mouse over the bug icon will show additional status
information, including the port Wing is listening on, which should be 50005 by
default.

How-Tos for Other Libraries

65

http://wingware.com/wingide/trial
http://wingware.com/pub/wingide/6.0.2/wing-debugger-raspbian-6.0.2-1.tgz

• Copy wingdebugpw from the machine where you have Wing IDE installed to
the Raspberry Pi and place it into the directory
wing-debugger-raspbian-6.0.2-1. This file is located in the
Settings Directory, which is listed 5th in Wing's About box.

• On the Raspberry Pi, use /sbin/ifconfig to determine the IP address of the
Raspberry Pi (not 127.0.0.1, but instead the number listed under eth0 or
wlan0 if you're using wifi).

• On the host where Wing IDE is running (not the Raspberry Pi), establish an
ssh reverse tunnel to the Raspberry Pi so the debugger can connect back to
the IDE. On Linux and OS X this is done as follows:

ssh -N -R 50005:localhost:50005 <user>@<rasp_ip>

You'll need to replace <user>@<rasp_ip> with the login name on the
Raspberry Pi and the ip address from the previous step.

The -f option can be added just after ssh to cause ssh to run in the
background. Without this option, you can use Ctrl-C to terminate the tunnel.
With it, you'll need to use ps and kill to manage the process.

On Windows, use PuTTY to configure an ssh tunnel using the same settings
on the Connections > SSH > Tunnels page: Set Source port to 50005,
Destination to localhost:50005, and select the Remote radio button, then
press the Add button. Once this is done the tunnel will be established
whenever PuTTY is connected to the Raspberry Pi.

• In Wing IDE's Preferences, use the
Debugger > External/Remote > Location Map preference to set up a
mapping from the location of your files on the remote host (the Raspberry Pi)
and the machine where the IDE is running.

For example, if you have files in /home/pi/ on your Raspberry Pi that match
those in /Users/pitest/src/ on the machine where Wing is running, then you
would add those two to the location mapping for 127.0.0.1, with home/pi/ as
the remote directory and /Users/pitest/src/ as the local directory. On Windows
the IP address to use in the location map may instead be the IP address of the
host where Wing is running. This depends on the peer ip that is reported on
the IDE side for sockets opened through the pipe.

Don't add a location map for the Raspberry Pi's ip address because your ssh
tunnel makes it look like the connection is coming from the local host where
the IDE is running.

How-Tos for Other Libraries

66

http://www.putty.org/

Invoking the Debugger

There are two ways to invoke the debugger: (1) from the command line, or (2) from
within your Python code. The latter is useful if debugging code running under a
web server or other environment not launched from the command line.

Debugging from the Command Line

To invoke the debugger without modifying any code, use the following command:

wing-debugger-raspbian-6.0.2-1/wingdb yourfile.py arg1 arg2

This is the same thing as python yourfile.py arg1 arg2 but runs your code in
Wing's debugger so you can stop at breakpoints and exceptions in the IDE, step
through your code, and interact using the Debug Probe in the Tools menu.

By default this runs with python and connects the debugger to localhost:50005,
which matches the above configuration. To change which Python is run, set the
environment variable WINGDB_PYTHON:

export WINGDB_PYTHON=/some/other/python

Use the Tutorial in Wing's Help menu to learn more about the features available in
Wing IDE.

Starting Debug from Python Code

To start debug from within Python code that is already running, edit
wing-debugger-raspbian-6.0.2-1/wingdbstub.py and change the line
WINGHOME = None to
WINGHOME = /home/pi/wing-debugger-raspbian-6.0.2-1 where /home/pi
should be replaced with the full path where you unpacked the debugger package
earlier. Use pwd to obtain the full path if you don't know what it is.

Copy your edited wingdbstub.py into the same directory as your code and add
import wingdbstub to your code. This new line is what initiates debugging and
connects back to the IDE through the ssh tunnel.

An alternative to editing wingdbstub.py is to set WINGHOME in the environment
instead with a command like
export WINGHOME=/home/pi/wing-debugger-raspbian-6.0.2-1.

Configuration Details

If for some reason you can't use port 50005 as the debug port on either machine,
this can be changed on the Raspberry Pi with kHostPort in wingdbstub.py or with
the WINGDB_HOSTPORT environment variable. To change the port the IDE is
listening on, use the Debugger > External/Remote > Server Port preference and
or Debug Server Port in Project Properties in Wing IDE.

How-Tos for Other Libraries

67

http://wingware.com/doc/intro/tutorial

If this is done, you will need to replace the port numbers in the ssh tunnel
invocation in the following form:

ssh -N -R <remote_port>:localhost:<ide_port> <user>@<rasp_ip>

The first port number is the port specified in kHostPort or with
WINGDB_HOSTPORT environment variable, and the second one is the port set in
Wing IDE's preferences or Project Properties.

On Windows using PuTTY, the Source port is the port set with kHostPort or
WINGDB_HOSTPORT on the Raspberry Pi, and the port in the Destination is the
port Wing is configured to listen on.

Refer to the documentation for ssh or PuTTY for details.

Trouble-Shooting

There are several ways in which a debug configuration can fail and when a
connection cannot be established to the IDE code will run without debug.
Additional diagnostic output is needed to find the cause of most problems. This is
done by setting an extra environment variable before initiating debug on the
Raspberry Pi:

export WINGDB_LOGFILE=/home/pi/debug.log

Hovering the mouse over the bug icon in the lower left of Wing's window will show
if a debug connection is active. Wing also adds icons to the toolbar while
debugging.

If Wing is not receiving a connection, check the reverse ssh tunnel, make sure that
wingdebugpw was copied, and check that Wing is listening for debug
connections.

If Wing is receiving a connection but breakpoints are not reached or source code is
not shown when reaching an exception, check your location map preference. A
good way to test this is to add a deliberate unhandled exception to your code (such
as assert 0) to see if Wing's debugger stops but fails to show the source code. The
location map must be correct for Wing to show the source code.

Setting up Wifi on a Raspberry Pi

It is possible to easily and cheaply connect a Raspberry Pi 2 to a wifi network. Here
are instructions for doing this using an Edimax EW-7811Un wifi USB card
(although other cards may also work) for a passphrase-protected wifi network:

• Plug in the USB wifi card and reboot your Raspberry Pi
• Edit /etc/network/interfaces and comment out the interface for wlan1. Nothing

works if this is not done.

How-Tos for Other Libraries

68

• Edit /etc/wpa_supplicant/wpa_supplicant.conf and add the following to the end:

network={
ssid="<yourssid>"
scan_ssid=1
key_mgmt=WPA-PSK
psk="<yourpassphrase>"
}

Replace <yourssid> your wifi network name and <yourpassphrase> with
your wifi passphrase. Be sure to use exactly the above with no changes in
spacing and with the quotes for the ssid and passphrase but not for other
things. Otherwise nothing works and you won't get any usable error messages.

• Restart your Raspberry Pi again and wifi should work.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Raspberry Pi home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

5.3. Using Wing IDE with Twisted
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for Twisted. Wing provides auto-completion,
call tips, a powerful debugger, and many other features that help you write,
navigate, and understand Python code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

Installing Twisted

The Twisted website provides complete instructions for installing and using
Twisted.

Debugging in Wing IDE

To debug Twisted code launched from within Wing IDE, create a file with the
following contents and set it as your main debug file by adding it to your project
and then using the Set Main Debug File item in the Debug menu:

How-Tos for Other Libraries

69

http://wingware.com/doc/manual
http://raspberrypi.org/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide/
http://twistedmatrix.com/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart
http://twistedmatrix.com/

from twisted.scripts.twistd import run
import os
try:
 os.unlink('twistd.pid')
except OSError:
 pass
run()

Then go into the File Properties for this file (by right clicking on it) and set
Run Arguments to something like:

-n -y name.tac

The -n option tells Twisted not to daemonize, which would cause the debugger to
fail because sub-processes are not automatically debugged. The -y option serves
to point Twisted at your .tac file (replace name.tac with the correct name of your
file instead).

You can also launch Twisted code from outside of Wing using the module
wingdbstub.py that comes with Wing. This is described in Debugging Externally
Launched Code in the manual.

Related Documents

Wing IDE provides many other options and tools. For more information:

• Wing IDE Reference Manual, which describes Wing IDE in detail.
• Twisted home page, which provides links to documentation.
• Wing IDE Quickstart Guide which contains additional basic information about

getting started with Wing IDE.

5.4. Using Wing IDE with Cygwin
Wing IDE is an integrated development environment that can be used to write, test,
and debug Python code that is written for cygwin, a Linux/Unix like environment for
Microsoft Windows. Wing provides auto-completion, call tips, a powerful debugger,
and many other features that help you write, navigate, and understand Python
code.

For more information on Wing IDE see the product overview. If you do not already
have Wing IDE installed, download a free trial now.

To get started using Wing, refer to the tutorial in the Help menu in Wing and/or the
Wing IDE Quickstart Guide.

How-Tos for Other Libraries

70

http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/manual
http://twistedmatrix.com/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide/
http://www.cygwin.com/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/manual
http://www.cygwin.com/
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.pygame.org/
http://wingware.com/products
http://wingware.com/wingide/trial

http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart
http://wingware.com/wingide
http://www.scons.org/
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/manual
http://wingware.com/doc/howtos/quickstart
http://wingware.com/
http://www.hex-rays.com/products/ida/index.shtml
http://wingware.com/products
http://wingware.com/wingide/trial
http://wingware.com/doc/howtos/quickstart

http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/manual
http://www.hex-rays.com/products/ida/index.shtml
http://wingware.com/doc/howtos/quickstart
http://wingware.com/
http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
http://wingware.com/products
http://wingware.com/wingide/trial
http://www.voidspace.org.uk/ironpython/wing-how-to.shtml
http://www.voidspace.org.uk/ironpython/wing-how-to.shtml
http://www.ironpythoninaction.com/

http://wingware.com/doc/manual
http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
http://wingware.com/doc/intro/tutorial
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/howtos/debugging-extension-modules-on-linux

http://wiki.python.org/moin/DebuggingWithGdb

http://www.semicomplete.com/projects/xdotool/

http://wingware.com/support

http://wingware.com/doc/debug/debugging-externally-launched-code

	How-Tos
	Wing IDE Quick Start Guide
	Install Python
	Set up a Project
	Configuring the UI
	Navigating Code
	Editing Code
	Debugging Code
	Other Features
	Related Documents

	How-Tos for Web Development
	2.1. Using Wing IDE with Django
	Installing Django
	Quick Start with Wing IDE Professional
	Existing Django Project
	New Django Project
	Django-specific Actions
	Usage Tips
	Debugging Exceptions
	Debugging Django Templates
	Notes on Auto-Completion
	Running Unit Tests
	Django with Buildout
	Manual Configuration
	Configuring the Project
	Configuring the Debugger
	Launching from Wing
	Launching Outside of Wing
	Debugging Django Templates

	Related Documents

	2.2. Using Wing IDE with web2py
	Introduction
	Setting up a Project
	Debugging
	Setting Run Arguments
	Hung Cron Processes
	Better Static Auto-completion
	Exception Reporting in Old Web2Py Versions
	Related Documents

	2.3. Using Wing IDE with Flask
	Debugging in Wing IDE
	Related Documents

	2.4. Using Wing IDE with Pyramid
	Installing Pyramid
	Configuring your Wing IDE Project
	Debugging
	Notes on Auto-Completion
	Debugging Mako Templates
	Debugging without wingdbstub.py (experimental)
	Related Documents

	2.5. Using Wing IDE with Plone
	Introduction
	Configuring your Project
	Debugging with WingDBG
	WingDBG in buildout-based Plone installations
	WingDBG as an Egg
	Debugging Plone from the IDE
	Related Documents

	2.6. Using Wing IDE with Zope
	Before Getting Started
	Upgrading from earlier Wing versions
	Quick Start on a Single Host
	Starting the Debugger
	Test Drive Wing IDE
	Setting Up Auto-Refresh
	Alternative Approach to Reloading
	Setting up Remote Debugging
	Trouble Shooting Guide
	Related Documents

	2.7. Using Wing IDE with Turbogears
	Installing Turbogears
	Configuring Turbogears 1.x to use Wing
	Configuring Turbogears 2.x to use Wing
	Notes for Turbogears 1.x
	Notes for Turbogears 2.x
	Related Documents

	2.8. Using Wing IDE with Google App Engine
	Creating a Project
	Configuring the Debugger
	Using the Debugger
	Improving Auto-Completion and Goto-Definition
	Trouble-shooting
	Related Documents

	2.9. Using Wing IDE with mod_wsgi
	Debugging Setup
	Disabling stdin/stdout Restrictions
	Related Documents

	2.10. Using Wing IDE with mod_python
	Introduction
	Quick Start
	Example
	Related Documents

	2.11. Using Wing IDE with Paste and Pylons
	Installing Paste and/or Pylons
	Debugging in Wing IDE
	Debugging Mako Templates
	Related Documents

	2.12. Using Wing IDE with Webware
	Introduction
	Setting up a Project
	Starting Debug
	Related Documents

	2.13. Debugging Web CGIs with Wing IDE
	Introduction
	Tips and Tricks

	How-Tos for GUI Development
	3.1. Using Wing IDE with wxPython
	Introduction
	Installation and Configuration
	Test Driving the Debugger
	Using a GUI Builder
	Related Documents

	3.2. Using Wing IDE with PyQt
	Introduction
	Installation and Configuration
	Test Driving the Debugger
	Using a GUI Builder
	Related Documents

	3.3. Using Wing IDE with GTK and PyGObject
	Auto-Completion
	Related Documents

	3.4. Using Wing IDE with PyGTK
	Introduction
	Installation and Configuration
	Auto-completion and Source Assistant
	Using a GUI Builder
	Details and Notes
	Related Documents

	3.5. Using Wing IDE with matplotlib
	Working in the Python Shell
	Working in the Debugger
	Trouble-shooting
	Related Documents

	How-Tos for Modeling, Rendering, and Compositing Systems
	4.1. Using Wing IDE with Blender
	Introduction
	Related Documents

	4.2. Using Wing IDE with Autodesk Maya
	Debugging Setup
	Better Static Auto-completion
	Additional Information
	Related Documents

	4.3. Using Wing IDE with NUKE and NUKEX
	Project Configuration
	Configuring for Licensed NUKE/NUKEX
	Configuring for Personal Learning Edition of NUKE
	Additional Project Configuration
	Replacing the NUKE Script Editor with Wing IDE Pro
	Debugging Python Running Under NUKE
	Debugger Configuration Detail
	Limitations and Notes
	Related Documents

	4.4. Using Wing IDE with Source Filmmaker
	Debugging Setup
	Related Documents

	How-Tos for Other Libraries
	5.1. Using Wing IDE with virtualenv
	Project Configuration
	Related Documents

	5.2. Using Wing IDE with Raspberry Pi
	Introduction
	Remote Development with Wing IDE Pro
	Manual Configuration for Wing IDE Personal
	Installing and Configuring the Debugger
	Invoking the Debugger
	Configuration Details
	Trouble-Shooting
	Setting up Wifi on a Raspberry Pi
	Related Documents

	5.3. Using Wing IDE with Twisted
	Installing Twisted
	Debugging in Wing IDE
	Related Documents

	5.4. Using Wing IDE with Cygwin
	Configuration
	Related Documents

	5.5. Using Wing IDE with pygame
	Debugging pygame
	Related Documents

	5.6. Using Wing IDE with scons
	Debugging scons
	Related Documents

	5.7. Using Wing IDE with IDA Python
	Debugging IDA Python in Wing IDE
	Related Documents

	Using Wing IDE with IronPython
	Project Configuration
	Related Documents
	6.1. Handling Large Values and Strings in the Debugger
	6.2. Debugging C/C++ and Python together
	6.3. Debugging Extension Modules on Linux/Unix
	Preparing Python
	Starting Debug
	Tips and Tricks

	6.4. Debugging Code with XGrab* Calls
	6.5. Debugging Non-Python Mainloops
	6.6. Debugging Code Running Under Py2exe

